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Chapter

Problems

1.1 Laplace Transforms

1. Find the Laplace transform of the following functions.

(a) f(t)=4t>—-2t+3 (d) f(t) = e 2 (4cos 5t + 3sin bt)
(b) f(t) =3sinbt —2cos 3t (e) f(t) =t3e? +2te™t
(c) f(t) =3e? + 5e~3 (f) f(t) = (1 +e%)?

2. Use an appropriate trigonometric identity to find the following Laplace trans-
forms. See page 43 for a list of trigonometric identities.

(a) ZL{cos’t} (d) Z{sin(wt + ¢)}
(b) Z{sin 2t cos 2t} (e) ZL{cos(wt+ ¢)}
(c) Z{sin3tcos4t} (f) L{e *sin(3t+ %)}

3. The hyperbolic sine and hyperbolic cosine are defined by

et —e? el +e?

sinht = and cosht = 5

Evaluate both Z{sinhwt} and Z{coshwt}.
4. Find both Z{coswt} and .Z{sinwt} by starting from Euler’s formula

e’? = cosf + jsind

and
1

s—a

P{e} =
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5. Use the frequency differentiation property (see page 42) to derive the follow-
ing formulas.

2ws s2 w2

(a) Z{tsinwt} = [CETIE (b) Z{tcoswt} = m

6. Use the frequency shift property (see page 42) to find the following.

(a) Z{te*sin3t} (b) Z{te 3" cos2t}

1.2 Inverse Laplace Transforms

In problems 1 — 8, find the inverse Laplace transforms of the given functions.

1 §—2
s+5 s+5
2. F(S)—m 6. F(S)—m
3s+1 1
3 F(S)252+5 & F(s)252—4s—|—7
1 o5 + 2
4. F(s) = 8. F(§) = ————
) =59 )= 7 56s 113

In problems 9 — 16, use the method of partial fractions to find the given inverse
Laplace transforms. See page 45 for a refresher on partial fractions.

s+3 s24+3s+4
9. 'S 5——— LT
== 1. 2 (S

1
St } 14. £

{a e (Zre
11, 7 1{5 +5+5} . 1{ 3s+2 }
t (i

10. Z~

s +s+4
s3 +9s

gt _ g2

12. !

2s+1
16. !
s—l—l )} s+3) 32+4s+13)}
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1.3 Initial Value Problems

Use Laplace transforms to solve the following initial-value problems.

10.
11.
12.
13.

14.

15.

1
2
3
4
5.
6
7
8
9

Yy +4y=e', y(0)=2

.y —y=sint, y0)=1
Ly 43y +2y=t+1, y(0)=1, y(0)=0

Ly 4y + 13y =0, y(0)=1, y'(0)=2

Yy +dy=4t+8, y(0)=4, y'(0)=-1
cY' Y =2y =5e%, y(0) =1, y'(0) = —4
Yty —2y=¢', y(0)=2, y'(0)=3
cy' =2 +y=¢', y(0)=3, y'(0)=4

Yy’ + 2y + 2y =cos2t, y(0)=0, y(0)=1

(
Yy’ +4y =sin3t, y(0) =2, y'(0)=1
y" +w?y =coswt, y(0)=0, y'(0)=0
Yy’ + 2y + 5y =3e"tcos2t, y(0)=1,y(0)=2
The differential equation for a mass-spring system is
ma” (t) + Bz’ (t) + kx(t) = F.(t).

Consider a mass-spring system with a mass m = 1 kg that is attached to a
spring with constant £ = 5 N/m. The medium offers a damping force six
times the instantaneous velocity, i.e., 3 =6 N- s/m.

(a) Determine the position of the mass z(t) if it is released with initial
conditions: z(0) = 3 m, 2’(0) = 1 m/s. There is no external force.

(b) Determine the position of the mass z(t) if it released with the initial
conditions: z(0) = 0, 2/(0) = 0 and the system is driven by an external
force F,(t) = 30sin 2¢ in newtons with time ¢ measured in seconds.

The differential equation for the current i(¢) in an LR circuit is

di
L—+ Ri=V().
3 THRI=VE)
Find the current in an LR circuit if the initial current is i(0) = 0 A given that

L=2H, R=4Q, and V(t) = 5e~ " volts with time ¢ measured in seconds..

The differential equations for the charge ¢(¢) in an LRC circuit is

Lq"(t) + R (t) + ? =V(t).

Find the charge and current in an LRC circuit with L = 1H, R = 2,
C =0.25F and V = 50cost volts if ¢(0) = 0C and i(0) = 0 A.
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1.4 Step Functions and Impulses

1. Find the Laplace transforms of the following functions.

1, 0<t<1 t, 0<t<1
(a) f(t)=493, 1<t<2 () fO)=4q1, 1<t<2
-2, t>2 0, t>2
sint, 0<t<m 0, 0<t<3
b t) = ’ — d t) = ) =~
(b) f(t) {07 fon (d) f(t) {tg’ £>3
2. Find the following inverse Laplace transforms.
6—23 e s
z1 LN
(2) {s+3} (c) {(5—1)(54—2)}
e—27rs e~ TS
b) ! d) ' ——
w {5 @« {m)
In problems 3 — 9, use Laplace transforms to solve the initial-value problem.
1, 0<t<1
3.y +2y=f(¢), 0) =3, wh t)y=<" -
v +2y=f(0), y(0) =3, where f(1 {07 o

0 0<t<
4. y" +y=f(t), y(0)=1, y'(0) =0, where f(t) :{ ) o
sint, t>m
1, 0<t<3
5.y +y —2y=f(t), y(0)=0, y'(0) =0, where f(t) = .
~1, t>3
1, 0<t<m,
6. y" +4y = f(t), y(0)=0,y'(0) =2, where f(t) = {2, 7<t<2m,
0, t>2m

7.9 +3y=0(t—1), y(0)=2
8.y +4y +13y=4(t—m), y(0)=2, y'(0)=1
9.y +y=03(t—T)+25(t—m), y(0)=3, y'(0)=-1

10. Find the Laplace transform of the periodic function f(¢) with period T' = 2a
defined over one period by

1, 0<t<a
t) = ’ -
1® {0, a<t<2a.
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11. The differential equation for the current i(¢) in an LR circuit is

di
L— =V (1).
dt+R2 V(%)

Consider an LR circuit with L = 1H, R = 42 and a voltage source (in volts)

2, 0<t 1
V=47 U=tS
0, t>1.

(a) Find the current i(¢) if ¢(0) = 0.
(b) Compute the current at t = 1.5 seconds, i.e., compute (1.5).
(c) Evaluate lim i(¢).

t—o0

(d) Sketch the graph of the current as a function of time.

12. Consider the following function with @ > 0 and ¢ > 0.

0, 0<t<a
1
de(t—a)=< -, a<t<a+e
€
0, t>a+e

(a) Find Z{0.(t —a)}.
(b) Show that: 21_1% L{o(t —a)} =e .

1.5 Convolution

1. Find the following Laplace transforms.

(a) L{1xt*} (c) ZL{et *sint}

(b) g{/otcosedo} () z{/otcosesm(t—a) d0}

2. Find the following inverse Laplace transforms by using convolution. Do not
use partial fractions.

(a) 271 {8(51_1)} (€ £~ {m}
R e I R e
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. Use convolution to derive the following formula.

o1 1 _ sin wt — wt cos wt
(2 + w?)? 2uw3

. Solve for f(¢) in the following equation.

f(t)=t+ezt+/te‘9f(t—0)d9

0

. Solve for f(¢) in the following equation. Be sure to find all solutions.
¢
| rese-oyas =
0
. Solve for y(t) in the following initial-value problem.

y'(t) +/O e Pyt —0)dd =1, y(0)=0
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Solutions

2.1 Laplace Transforms

1. We use the table of Laplace transforms (see page 41) to answer this question.

(a) 2L} =42{} —2.2{} +32(1) = 5 — 5 +°
. 15 2s
(b) Z{f(t)} =3.L{sinbt} —2.L{cos3t} = P15 219
(c) Z{f(t)}y=3L{e*"} +5L{e?} = . f 5T s—i3
_ —2t —2t _ As+2) 15
(d) 2{f(t)} =4L{e * cosbt}+3.L{e * sinbt} = G122125 (5122425
(e) L{f(t)} = L{t?e*} +2.L{te™"} = 6, 2

(s=2)t  (s+1)?
(f) Since f(t) = (14 €3)? =1+ 2¢3t + €5 we have

1 2 1
L{f(t)} = 2{1} +2.2{) + 2} = - + n .
s s—3 s—6
2. (a) Since cos?t = 1+ ;OS 2t7 we have

L{cos?t} = - (L{1} + L{cos2t})

1
2
_11 S
—z<s+§+4)
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(b) Starting from the identity sin 20 = 2sin 6 cos 6, if we let 6 = 2t we get

1
sin4t = 2sin 2t cos 2t — sin 2t cos 2t = 5 sin 4t

and

1 1 4 2
Z{sin 2t cos2t} = 53{5111415} =3 <32 T 16) 2116

(c) From the identity sinacos 3 = £ (sin(a + B) + sin(a — 8)), we deduce
sin 3t cos 4t = %(sin(i’)t + 4t) + sin(3t — 4t))
= %(sin Tt + sin(—t))
= %(sin Tt —sint)

and

1 7 1
Z{sin3tcosdt} = 5 (32 PR 1) .
(d) From the identity sin(a + 3) = sin awcos 8 4 cos asin 3, we deduce
sin(wt + ¢) = sinwt cos ¢ + cos wt sin ¢
and

Z{sin(wt + ¢)} = cos ¢ L{sinwt} + sin ¢ L {coswt}

w . S
- osd <+w) ene <+w) -

(e) From the identity cos(a + ) = cosacos § — sin asin 3, we deduce
cos(wt + ¢) = coswt cos ¢ — sin wt sin ¢
and

ZL{cos(wt + @)} = cos p L{coswt} — sin ¢ L{sinwt}

S . w
= COS¢ <W> — s1n(;5 (M) .

(f) Using the identity sin(a + ) = sin avcos 8 4 cos asin 3, we deduce
e ?sin(3t + %) = e *(sin3tcos T + cos3tsin %)
= e_Qt(§ sin 3t + § cos 3t)
= @e‘zt sin 3t + %e_% cos 3t

and

ZL{e*sin(3t+F)} = ? <(8+23)2+9> +% <<ij;322+9> .
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. 1
3. Using Z{e"} = ——, we deduce
s—a
1
Z{sinhwt} = i(f{e‘”t} — Z{e"})
VIS
S 2\s—w s4w
1l /stw—(s—w)
2 §2 — w?
w
T2 2
and
1
ZL{coshwt} = 5(3{6“"“} + ZL{e "))
(1,
S 2\s—w sHtw
_ 1 sStw+s—w
2 §2 — w?
s
T2 2
4. From Euler’s formula, we get
ZL{e'} = L{coswt} + jL{sinwt}. (2.1)
1
From #{e*} = T e deduce
. 1 1 S+ jw s+ jw
Diﬂ Jjwt — — = . 2.2
{e'} 5 — jw 5—jw<s+jw) 52 +w? (2.2)

Since the real and imaginary parts
conclude that

S
g{COS Wt} = m

in equations (2.1) and (2.2) are equal, we

w

and f{snlwt} = ﬁ
S w

5. We will use the property Z{tf(t)} = —F'(s).

(a) If f(t) = sinwt, we have F(s)

L{tsinwt} = —F'(s) = —

= 2:_} 5 Therefore
s w
& (_w
ds \ 82 + w?

2ws

- (32 +w2)2'
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(b) If f(t) = coswt, we have F(s) = 5 Therefore

5
24w
d s
:—F/ = —— B ——
ZL{tcoswt} (s) o < )

s2 +w?

52—w2

(52 +w?)?’

6. We use the frequency shift property Z{e* f(t)} = F(s — a).

6
(a) Since Z{tsin3t} = ﬁ, we conclude that

6(s —2) _ 6(s —2)
s—2)2+49)2  (s2—4s+13)2

f{tezt sin St} = [

2
—14
(b) Since L{tcos2t} = (:QTQZ, we conclude that
(s+3)2—4 52 +6s+5

(s+3)2+4)2  (s2+65+13)2

ZL{te* cos2t} = (

2.2 Inverse Laplace Transforms
)b 3

31{5214}+;$1{523—4} = cos2t+gsin2t
3_1{528%}+¢15$_1{52\/Es}

1 1
fl{ijig)}SCOS\/gtJr\/gsin\/gt

1 1 4! the3t
-1 _ -1 _
4. 7 {(5—3)5}_4!"? {(3—3)5} 24

. By completing the square, we get

=

N
I
-
—N
Vo)
+
ot

95
|
-
—
w
VA
Jr
—
—_——  —
I
w

4

2 +25+5=(s+1)°+4.
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Observe that
s—2  (s+1)—-3

s24+2s+5  (s+1)2+4

Therefore,

1 5—2 1 s+1 3 2
z {32+25+5}$ {(s+1)2+4} 2$ {(8+1)2+4

3
=le tcos2t — 3 e~ ! sin 2t.

R

1 s+5 1 . sin 3t — 3t cos 3t
—— = —tsin3t+5| —m———
{<s2+9>2} 6 T ( 2(39)

1 5 5
= 6tsin3t+ 5—4sin3t7 1—8tc0s3t.

7. By completing the square, we get

s —4s+7=(s—2)% +3.

f{—iw}:%f{m?w}

L oo
=| —e* sin V/3t.
V3

Therefore,

8. First we complete the square to get
s+ 65 +13=(s+3)2 +4.

Observe that
5s + 2 ~ 5(s+3)—13
(s2+6s5+13)2  ((s+3)2+4)2

We now use the frequency shift theorem Z{e f(t)} = F(s—a) to conclude

that
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5s — 13
Now let’s focus on .2 —1d 22— 2 L
(82 +4)2

5 sin 2t — 2t cos 2t
= —tsin2t — 13| ——————
1 sin 3( 202)3 )

5 13 13
= Zt sin 2t — 6 sin 2t + gtcos 2t
Therefore,
5s + 2 - 5 13 13
= = Ve D isin2t— —sin2t+ —¢ 2t | .
{ (32 65 1 13)2 } e 1 sin 16 sin 2t + 3 cos

9. We can factor the denominator to obtain
s2+4s—5=(s—1)(s+5).
The partial fractions decomposition is of the form

s+ 3 A B

(s—1)(s+5) 3—1+5+5.

Using the cover-up method we obtain A and B as follows.

s+3 2 s+3 1
A= ———— ==~ and B= — ——— ==
s~y (s+5)| _, 3 (s-Dls45) | _ . 3
Then,
+3 2 1 1 1
‘i/pfl S — 70%71 70%71
{(s—l)(s+5)} 3 s—1) 73 5+5
_ 261& 4 et
10. The partial fractions decomposition is of the form
s+1 A B

2s—1)(s+2) 25—1 512

Using the cover-up method we obtain A and B as follows.

A STl 3 ad B=—__StL -

1
2T (s +2)[,_,, O (25— 1)ls+27 | _, 5
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Then,

2 Naera) = i)

1

5
U BPPSE G S U PORY
=527 {5—1/2}+5$ {s+2}

R e
—106 —|—5e .

11. We start by factoring the denominator to get s* — s = s?(s —1)(s+1). The
partial fractions decomposition is of the form

s24+s+5 A E C D

Pe-De+1) s 2 s—itert
By multiplying both sides by s2(s — 1)(s + 1) we get
2 +s5+5=As(s —1)(s+ 1)+ B(s—1)(s + 1) + Cs*(s + 1) + Ds*(s — 1).
To find the constants, let’s assign values to s as follows.

s=0 = 5=0-B+4+04+0 = B=-5

s=1 = 7=04+04+2C4+0 = C=7/2

s=—-1 = 5=04+0+0—-2D = D=-5/2
11-3B——-12C —-4D

s=2 — 11=6A+3B+12C+4D — A= 5

Then,

2
st rsHS . a1 a1 [ 1 9, 1
< { st —s? } < {s} ol {32 +2$ s—1 2$ s+1

= —175t+getfgeft.

12. The partial fractions decomposition is of the form

1 A Bs+c

(s+1)(s2+4) 8+1+ s?2+4°

We can use the cover-up method to find A, B, C as follows.
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13.

14.

(Bs +C)|s=2j =

2Bj +C

CHAPTER 2. SOLUTIONS

1
(s +1) (s2+4]
1
1+25
1 1—2j
1+ 2j (1—2j>
1—2j
5

s=2j

Since the real and imaginary parts are equal on both sides, we get

1
B=——
5

Then,

2 oo )

1
)

-

1
d C=-.
an 5

1 1,
s+1}_5$ {

s
s2+4

1
5

¢ 1 1
—e " — —cos2t+ — sin 2t.

5 10

The partial fractions decomposition is of the form

S2+38+4_

A

B C

(s —2)°

Py )l P

By multiplying both sides by (s — 3)® and expanding, we get

2 +3s+4=A(s—2?+B(s-2)+C
= A(s* —4s+4)+Bs—2B+C
= As> + (B —4A)s + (C — 2B + 4A).

We conclude that

A=1, B-4A=3 = B=1,

Then,

e

1

3 o

= ’ et + Tte?t 4+ Tt e, ‘

14 _ 2!
}Hrf {

1 -1
}%-25’ {

C—-2B+4A=4 = C=14.

2
s$24+4

We factor the denominator to get s> + 9s = s(s? +9). The partial fractions
decomposition is of the form

s°+s+4 A Bs+C

s(s2+9)

s+ s249°

)

|
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15.

16.

By multiplying both sides by s(s? + 9) and expanding, we get

s+ s+4=A(s*+9)+ (Bs+O)s
= As®’ +9A+ Bs* + Cs
= (A+B)s* + Cs +9A.

We conclude that
9A=4 = A=4/9, C=1, A+B=1 = B=5/9.

Then,

2
[ +s+4 _é 1 1 § 1 S 1 1 3
z { s3 +9s }_9"% s +9‘$ s2+9 +3$ $2+9

4 5 1
= 9 + §cosSt+ gsini’)t.

The partial fractions decomposition is of the form

35+2 A B _C Ds+E

s3(s24+1) s tetet 2417

By multiplying both sides by s3(s? 4+ 1) and expanding, we get

3s+2=As?(s> + 1)+ Bs(s> + 1) + C(s* + 1) + (Ds + E)s*
= As* + As> + Bs® + Bs+ Cs> + C + Ds* + Es®
0s* 405 405> +3s+2=(A+ D)s* + (B+ E)s* + (A+C)s* + Bs + C.
We conclude that
C=2
B=3
A+C=0 = A=-2
B+E=0 — E=-3
A+ D=0 = D=2.

Then,

2
31{%}2+3t+t2+2005t381nt.
s3(s

First we complete the square to get s +4s+13 = (s +2)2 +9. We can look
for a partial fractions decomposition in the form

25 +1 A B(s+2)+C

(s+3)(s2+4s+13) s+3  (s+2)2+9°




16

CHAPTER 2. SOLUTIONS

Method 1. Let’s multiply both sides by (s + 3)((s +2)2 +9) to get
25 +1=A((s+2)>+9)+ (B(s +2) + O)(s + 3).
To find the constants A, B, and C, let’s assign values to s as follows.

s=-3 = —5=10A+0 = A=-1/2
s=-2 = -3=9A+C = C=-3-9A=3/2
s=—1 = —1=10A+2B+2C — B=(-3-104-20C)/2=1/2

Method 2. We can use the cover-up method to find A, B, and C.

A 25 +1 1
(s438] (2 +4s+13)| . 2
Since s +4s+ 13 = (s +2)2 + 9 =0 if s = —2 + 3j, then
2s+1
(B(s +2) + C)s=—243; = 5
(s +3) (s2445+T13) |,_ .3,
. 2(-2+3j5)+1
3Bj+C = ——————
J (—2+35)+3
_ —3+6j
1435
(3465 (1-3j
S\ 1435 1—3j
. 155 + 15
3B C=—
It 10

Since the real and imaginary parts are equal on both sides, we get

15

15 15 3
10

1

Then,

2s +1 _ 11! s+2 L 3
(s+3)(s2+4s+13) 2\s+3) 2\ (s+22+9) 2\ (s+2)2+9

and

25+ 1 1 1
7 =——¢e* 4 ~ e % (cos3t +sin3t).
{(s+3)(32+43+13)} g€ Fge (cosdt+singt)
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2.3 Initial Value Problems

1. Take the Laplace transform on both sides of the differential equation.
L{y () +42{y(t)} = Z{e'}

Since y(0) = 2, we get

Solving for Y'(s) gives
2 1 2s -1

S+4+(8+4)(5—1) (s+4)(s—1)"

Y(s) =

Using partial fractions, we obtain

Y(S):g(si4>+;<si1>'

Taking the inverse Laplace transform gives the answer.

1
y(t) = 267“ TE ¢’

2. Take the Laplace transform on both sides of the differential equation.
LU0} - Z{y()} = L{sint}
Since y(0) = 1, we get

1
s241°

(sY(s) = 1) = ¥(s) =

Solving for Y (s) gives

1 1 5242
H e R PR Ve R P Fa

Using partial fractions, we obtain

Y(S)zg(gil)_;<s2s+1)_;<s2l+1)'

Taking the inverse Laplace transform gives the answer.

(t) ot~ Leost— Laint
= —€ — —COSU — —SsIn
Y 2¢ 79 2
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3. Take the Laplace transform on both sides of the differential equation.
2{y" (O} + 320y ()} + 22{y (1)} = Z{t} + 2{1}
Since y(0) =1 and 3/(0) = 0, we get
1 1
(s2Y(s) —5—0) +3(sY(s) — 1) +2Y(s) = 2 + 3
Solving for Y (s) and simplifying gives
s+3 n 1 + 1
$24+3s+2  $2(s2+3s+2)  s(s24+3s+2)
s3+3s2 +s4+1
S2(s+1)(s+2)°

Y(s) =

Using partial fractions, we obtain

-3 (5)-4 ) (o)1)

Taking the inverse Laplace transform gives the answer.

1.1 3
t)=—t——-+2 -2
yit) =gt - +2 — e

4. Take the Laplace transform on both sides of the differential equation.
LIy (O} + 42y ()} + 13L{y(t)} = 0
Since y(0) =1 and 3/(0) = 2, we get
(s2Y (s) — s — 2) + 4(sY(s) — 1) + 13Y (s) = 0.

Solving for Y (s) gives
5+6
s2+4s+13°

By completing the square of the denominator, we get

Y(s)=

2 +4s+13=(s+2)2+9.

Therefore,

(54244 s+2 4 3
Y(s)‘(s+2)2+9_(s+2)2+9+3<(s+2)2+9>‘

Taking the inverse Laplace transform gives the answer.

4
y(t) = e * cos 3t + 3 e ?!sin 3t
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5. Take the Laplace transform on both sides of the differential equation.
Ly ()} +4L{y(t)} = 42{t} + {8}

Since y(0) =4 and y/(0) = —1, we get
, 48
(s°Y(s) —4s+1) +4Y (s) = 2ty
Solving for Y (s) gives

_43—1 4 8 _433—32+8s+4

Y(s) = =
() s2+4 * s2(s2 +4) * s(s?2 +4) s2(s%2 +4)

Using partial fractions, we obtain

1 1 S 2
Y(s)=—+2(-)+2 - :
(5) 52+ <5)+ (52+4) s2+4

Taking the inverse Laplace transform gives the answer.

| y(t) =t + 2+ cos 2t — sin 2t

6. Take the Laplace transform on both sides of the differential equation.
L{y" (O + 2{y ()} - 22{y(1)} = 5.2{e™ }
Since y(0) =1 and y'(0) = —4, we get

5

(s*Y (s) —s+4) + (sY(s) — 1) —2Y(s) = penry

Solving for Y'(s) and simplifying gives
s—3 5
s2+s—2 + (s2+s—2)(s—3)
(s—3)2+5
B (s24+s—2)(s—3)
_ 5?2 —6s+ 14
(s +2)(s—1)(s—3)°

Using partial fractions, we obtain

Y(s):2(si2>_g<s—l1)+;<si3>'

Taking the inverse Laplace transform gives the answer.

Y(s) =

3 1
y(t) _ 26—2t _ 562& + 5eSt
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7. Take the Laplace transform on both sides of the differential equation.

L' O+ 2{y ()} —22{y(t)} = Z{e'}
Since y(0) = 2 and 3/(0) = 3, we get

1
s—1°

(s2Y (s) — 25 — 3) + (sY(s) — 2) — 2V (s) =

Solving for Y (s) and simplifying gives
25+5 1
Yis) = s2+s—2 + (s2+s—2)(s—1)
(2s+5)(s—1)+1
- (s24+s—2)(s—1)
252 +3s5—4
(s+2)(s—1)2"

Using partial fractions, we obtain

o= (2) () - )

Taking the inverse Laplace transform gives the answer.

2 2 1
7672t+706t+7tet

yt)=—3 9 3

8. Take the Laplace transform on both sides of the differential equation.
L{y" (1)) - 22{y ()} + 2{y(1)} = 2{'}
Since y(0) = 3 and 3/(0) = 4, we get

1
s—1°

(s2Y(s) —3s —4) —2(sY(s) —=3) + Y(s) =

Solving for Y'(s) and simplifying gives

35 — 2 + 1
2—2s+1 (s2—-2s+1)(s—1)
Bs-D+1 1

(s —1) (s —1)

() et (o)

Taking the inverse Laplace transform gives the answer.

Y(s) =

1
y(t) = 3e" +te' + 3 t2et
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9. Take the Laplace transform on both sides of the differential equation.
2{y" (O} + 220y ()} + 22{y(t)} = L{cos 2t}

Since y(0) = 0 and y'(0) = 1, we get

2V (5) — 1) + 25Y(s) + 2V (5) = ——.

(Y () = 1)+ 26Y (5) +2Y (5) =
Solving for Y'(s) and simplifying gives
1 s
Y =
() 32+25+2+(52+25+2)(52+4)
- s>+ s+4
C (2425 +2)(s2+4)
Using partial fractions, we obtain
1 s+8 1 (s—4
Y [EES (S S | ——

) =15 (32 25+ 2) 10 <s2 ¥ 4)

By completing the square, we get
2425 +2=(s+1)+1.
Therefore,
1 1 7 1 —4
Y(s) = — (HD+TY 1 (s
10 \(s+1)2+1 10 \ s2+4
Ll swl N T 1N (s N 4 (2
10 \(s+1)24+1 10 \(s+1)2+1 10 \ s2+4 10-2 \ s2+4

Taking the inverse Laplace transform gives the answer.

1 7 1 1
y(t) = Ee*tcostJr Ee*tsintf 1—00052t+ gsin2t

10. Take the Laplace transform on both sides of the differential equation.
LY} + 42{y(0)} = Lsin3t)
Since y(0) = 2 and ¥'(0) = 1, we get

(s%Y (s) — 25 — 1) +4Y (s) = %
Solving for Y (s) gives

Y(s)—28+1—|— 3
244 (s24+4)(s2+9)

)
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Using partial fractions, we obtain

3 3 3
(2+4)(s2+9)  5(s2+4) 5(s2+9)
Therefore,
25+ 1
Y(s) = s+ " 3 7 3

s24+4  5(s244) 5(s2+9)

(=51) 5 (wn) ()

Taking the inverse Laplace transform gives the answer.

4 1
y(t) = 2cos2t + gsin2t — gsin?)t

11. Take the Laplace transform on both sides of the differential equation.
Ly ()Y + W L{y(t)} = L{coswt}

Since y(0) =0 and 3/(0) = 0, we get
s

%y Y (s) = 5.
sV () +wV(s) = 5

Solving for Y (s) gives

s 1 2ws
YO = G s (s o)

Taking the inverse Laplace transform gives the answer.

(£) = — tsinwt
= — {SInw
Y 2w

12. Take the Laplace transform on both sides of the differential equation.
L)} + 220y ()} +5L{y(t)} = 3L {e " cos 2t}
Since y(0) =1 and ¢/(0) = 2, we get

3(s+1)

(s?Y (s) — s —2) +2(sY(s) — 1) + 5Y (s) = (5+1)2+4

Solving for Y (s) gives

s+4 3(s+1)

YO = o s T st (G 2+ )
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Since 52 4+ 2s+ 5 = (s + 1) + 4, we obtain

1 1
Y(s) = (s + )2+3 3(54g ) i
(s+1)2+4 ((s+1)2+4)

s+l 3 2 3(s+1)
2 ((s+1)2+4) (s+1)2+4)2

(s +1)2+4 3
Taking the inverse Laplace transform and using frequency shift property
L HF(s—a)} = e 27 HF(s)}

we get

= e tcos(2t) + ge*t sin(2t) +e .21 {((9;)—)1—54)2}

3 3 4
= e "cos(2t) + ie_t sin(2t) + ze_t 7 {(52—54)2} .

Taking the inverse Laplace transform gives the answer.

y(t) = e " cos(2t) + ge*t sin(2t) + Zte’t sin(2t)

13. The differential equation of the mass-spring system is

2 (t) + 62/ (t) + 5x(t) = Fo(t).

(a) We have F,(t) = 0 and the initial conditions are
z(0)=3 and 2/(0) =1.
Take the Laplace transform on both sides of the DE to get
(X (s) —3s — 1) +6(sX(s) — 3) + 5X (s) = 0.
Solving for X (s) gives

3 19 3 19
X(s) = s+ S+

22+65+5 (s+1)(s+5)

Using partial fractions, we obtain
4 1
X(s) =

s+1 s+5
Taking the inverse Laplace transform gives the answer.

‘x(t) =4et -7
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(b) We have F(t) = 30sin2t and the initial conditions are
z(0)=0 and 2'(0)=0.

Take the Laplace transform on both sides of the DE to get

s2X (s) 4+ 65X (s) + 5X (s) = 30 <822+4> .

Solving for X (s) gives

60 60

X(s) = (s2+65+5)(s2+4) (s+1)(s+5)(s2+4)

Using partial fractions, we obtain

X(s) =3 1 15 1 72 s n 12 2
5) = - = - = .
s+1 29 \s+5 29 \ s +4 29-2 \s?2+4

Taking the inverse Laplace transform gives the answer.

15 72 6
x(t) =3¢t — 5 e % — 39 05 2t + % sin 2t

14. The differential equation of the LR circuit is
21 (t) + 4i(t) = 5e” "

with initial condition ¢(0) = 0. Take the Laplace transform on both sides of
the DE to get

2s1 41(s) = .
SI(s) +41(s) =
Solving for I(s) gives
)
()= —— 2>
)= G Toe+D

Using partial fractions, we obtain

) )

)= 5671 2612

Taking the inverse Laplace transform gives the answer.
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15. The differential equation of the LRC circuit is

q"(t) + 24 (t) + 4q(t) = 50 cost

with initial condition ¢’(0) = 0 and ¢(0) = 0. Take the Laplace transform

on both sides of the DE to get

szQ(s) +25Q(s) +4Q(s) = %.

Solving for Q(s) gives

50s

Q) = it 1)

Using partial fractions, we obtain

Q(s)—@ 3s+2 _iO 3s+8
13\ s2+41 13\ s24+254+4)°

By completing the square, we get

2425 +4=(s+1)2+3.

Therefore
Q(S)_@ 3s+2Y\ 50 (3(s+1)+5
13\ s2+1 B\ (s+1)2+3

V3

150 s +1LO 1 150 s+1 250
13 \s24+1 13 \s2+1 13 \(s+1)2+3 13V3

Taking the inverse Laplace transform gives the answer.

1 1 1 2
q(t) = % cost + ligo sint — %O et cos V3t — 135\/05 e !sin /3t

2.4 Step Functions and Impulses
1. We will use the following time shift property.
iUt —a)} = e L{f(t+a)}

(a) We have f(t) =1+2U(t—1) —5U(t — 2). Then,

—s —2s
2 =+ -

S S

(s+1)2+3

) |
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(b) We have f(t) =sint —sint U(t — 7). Then,
Z{f(t)} = L{sint} — L{sint U(t — )}

1

= a1 e ™ Lsin(t + )}
1 ;

=21 eT ™ L{—sint}

B 1 n e "*

Cs2+1 0 s241

(c) We have f(t) =t —tU{t—1)+ Ut —1) — U(t — 2). Then,
L{f()}y = 2{t} - 2{tut -+ 2{ut - 1)} - 2{U(t - 2)}

—s —2s

(& e

1
== —e Lt +1 —
52 € {t+ 13+ s

s
1 (1 1 e=s e %
=5 —e€ -+ ]+ -

S S

(d) We have f(t) = t>U(t — 3). Then,
L{ft)}y =2{tu(t-3)}
=e . 2{(t+3)%}
=e B 2{t* +6t+9}

_ 6*5 2+£+g
- 3 s2 s/’

2. We will use the following time shift property.
L e F(s)} = f(t—a)U(t —a)

(a) If F(s) = %, then f(t) = e~3. Therefore,
s

e —3(t—2)
Z =e Ut —2).

), then f(t) = 3 sin2t. Therefore,

L
—— NI
CIJM q;l
1y
I
—

I

1
3 sin2(t — 2m) U(t — 2m)

1
= §sin2t Ut —2m).
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1
c) Let F(s) = ———————. Using partial fractions, we get
(5—1)(s +2) &

F(S);(s;siz)'

—e72!), then

Since f(t) =2 1 {F(s)} = 3(¢’

R {(s—f)_(i—FQ)} = % (e(t_l) - 6_2(t_1)) Uit—-1).

1
(d) Let F(s) = ST Using partial fractions, we get

1 s
o =52
Since f(t) = £ "1 {F(s)} =1 — cost, then

-1 {s,(:?j:l)} = (1 —cos(t —m))U(t — )

:’(1 +cost)U(t — 77)‘

3. The IVP is
y(0) = 3.

y'() +2y(t) =1— Ut - 1),
Take the Laplace transform on both sides of the DE to get

6—5

(sY(s) — 3) + 2V (s) = é -

Solving for Y (s) gives

1
Let G(s) = REFTE Using partial fractions we obtain

Since
3 + G(s) — e °G(s),
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we conclude that
y(t) =3e " +g(t) —g(t — Ut - 1)

a2t Lo Lo o N
=34 (1)~ S (1-e Ju-1)

L 5 o

5 -2 L a1 gy -
Stse 2(1 e )u(t 1).

We can also express y(t) as a piecewise defined function as follows.

1,5 -2t
5 +s5e 0<t<1
v =93 5 1 —2(t-1)
5 e + 3 e s t 2 ].
4. The IVP is
y'(t) +y(t) =sint Ut — ), y(0)=1, y'(0) =0.

Take the Laplace transform on both sides of the DE to get

(s2Y(s) — s) + Y (s) = L{sint U(t — 7)}
e L {sin(t + )}

=e "L {—sint}

e
8241
Solving for Y (s) gives
S e—ﬂ'S
Y(s) = — .
() 241  (s2+1)2
Since )
sint — tcost
K7 =
{ (s? +1)2 } 2 ’
we get

sin(t — ) — (t — ) cos(t — )

y(t)cost< > )Z/l(tw)

sint — (t — ) cost

= cost+< 5 )Z/{(t—ﬂ').

We can also express y(t) as a piecewise defined function as follows.

cost, 0<t<m
y(t): 1 1 .
(1—5(t—m))cost+ 5sint, t>m
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5. The IVP is
y'(t) +y'(t) = 2y(t) =1 —=2U(t - 3), y(0) =0, y'(0) = 0.

Take the Laplace transform on both sides of the DE to get

1 2 —3s
$2Y (s) + sY(s) — 2V (s) = - — 25—
s s
Solving for Y (s) gives
1— 23 1— 23
Y(s) = c - c .
s(s2+s—-2) s(s—1)(s+2)
1
Let G(s) = oG Using partial fractions we obtain
1 1 1 1 1 1
G — N tzft 77275_7.
)= 35D 652 25 9(t) = 3¢+ 5e 2
Since
Y (s) = G(s) — 273 G(s),
we conclude that
1 1 1 2 1 .
R L L (A ) BV U B SNy
y(t) 3¢ +66 5 <3e +3e Ut —3)
We can also express y(t) as a piecewise defined function as follows.
el Le2 L 0<t<3

y(t) = {

6. The IVP is

W W=

(et — 26@’3)) + % (e’% — 26’2(t’3)) + %, t>3

y'(t) +4y(t) =1+ Ut —7) —2U(t —2m), y(0) =0, y'(0) =2.

Take the Laplace transform on both sides of the DE to get

1 —Ts 2 —27s
(Y (5) = 2) +4Y () = — + < S

s s
Solving for Y (s) gives
2 1 + e~ TS 2672775
Y(s) =
() s2+4 * s(s?2+4)
1
Let G(s) = EEE Using partial fractions we obtain

G(s):i<i—82‘°’+4> — g(t)zi(l—cos%).

29
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Since 5
— —TSs _ —27s
Y(s) = e +G(s)+ e "G(s) —2¢ " G(s)

we conclude that
, 1 1
y(t) = sin 2t + 1 (1 — cos2t) + 1 (1 —cos2(t —m))U(t — )

_ % (1 — cos 2(t — 2m)) Ut — 27).

Simplifying gives the answer.

1 1 1
y(t) = sin 2t + y (1 —cos2t) + I (1 —cos2t)U(t —m) — 3 (1 —cos2t)U(t — 2m)

We can also express y(t) as a piecewise defined function as follows.

sin2t 4+ 1 (1—cos2t), 0<t<m
y(t) = sin2t + 2 (1 —cos2t), m<t<2r
sin 2t, t> 21

7. Take the Laplace transform on both sides of the differential equation.
L{y' ()} +3L{y(t)} = L{o(t - 1)}
Since y(0) = 2, we get
(sY(s) —2)+3Y(s) =e°.

Solving for Y (s) gives
2 e’
Y(s)=—+ ——.
() s+ 3 + s+3
Taking the inverse Laplace transform gives the answer.

y(t) =273 4 3Dyt — 1)

8. Take the Laplace transform on both sides of the differential equation.
LU0} + 424 (1)) + 3Ly} = 2{5( - m)}
Since y(0) = 2 and 3/(0) = 1, we get
(s2Y (s) — 25 — 1) +4(sY (s) — 2) + 13Y(s) = ™.
Solving for Y'(s) gives

2s+9 4 e~ s
s24+4s+13  s24+4s+13°

Y(s) =
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By completing the square, we get

s2+4s+13=(s+2)2 +09.

Therefore,
2549 e’
Y =
) =G 2rre T Gr2Ea0
2(s+2)+5 e’

_(s+2)2+9+(s+2)2+9 .
=2\ Gr2219) T3\ Grere) T3 oo )
(737m) 3 (Grrms) + 5 (o)

Taking the inverse Laplace transform gives

1
y(t) = 2e "  cos 3t + ge*% sin 3t + 5672(“”) sin3(t — m)U(t — ).

Since sin 3(t — ) = —sin 3¢, we obtain the answer

5 1
y(t) = 2¢~ % cos 3t + ge*” sin 3t — ge*m*”) sin 3tU(t — ).

9. Take the Laplace transform on both sides of the differential equation.
L0} + LUy} = L{0(t - )} + 2205t - m)}
Since y(0) = 3 and y/(0) = —1, we get
(52Y(s) =35+ 1) + Y (s) = e 25+ 277,
Solving for Y (s) gives

3s—1 e 354275
Y =
(s) s2+1 + s2+1

N A S W
= — e —_— (& .
s24+1 s24+1 s2+1 s2+1

Taking the inverse Laplace transform gives

y(t) = 3cost —sint +sin(t — 5)U(t — §) + 2sin(t — m) U(t — 7).

Since
sin(t — §) = —cost and sin(t — 7) = —sint,

we obtain the answer

’y(t) =3cost —sint —cost U(t — T) — 2sint U(tfw).‘
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10. We will use the formula

T
LU = [ 0

1—esT

f(t):{l, 0<t<a

0, a<t<2a

Since

and T = 2a, we have

LUO) = ([ O

() ()
)
e

o
s(1+4e—as)

11. Since V(t) =2 —2U(t — 1), the differential equation of the LR circuit is
() + 4i(t) = 2 — 2U(t — 1)

with initial conditions i(0) = 0. Take the Laplace transform on both sides
of the DE to get

2 2e°
I 41(s) = — — .
SI(s) +41(s) = 2 = 2
Solving for I(s) gives
2 2e~°
I(s) = — .
() s(s+4) s(s+4)
Let G(s) = m Using partial fractions, we obtain
111 1 a
G(S)_Z(s s—|—4) = g(t)—2(1 e )
Since

I(s) = G(s) — e °G(s),

we can take the inverse Laplace transform to get the current.
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(a)

i(t) = % (1—e ) - % (1 - e*4<H>) Ut — 1)

(b) We can express i(t) as follows.

it) = {

For t = 1.5, we get

(1—e*), 0<t<1
(6_4(t_1) _ e—4t) , t 2 1

N~ Do~

1 . .
i(15) = 5 ((374(1“’71) - e*4<1*’>) ~ 0.0664.

At t = 1.5 seconds, the current is about 0.0664 A.
(c) Fort > 1, we have

i(t) = % (e*4(t*1) - e*4t> .

Therefore,
lim i(t) = 0.

t—o0

(d) The graph of i(t) is the following.

0.4—
03—

0.2—

R N I I I I
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 18 2.0
t

Observe that the current i(t) is continuous even though the voltage is
discontinuous at ¢t = 1.

12. We have ) )
Oc(t —a) = gu(t—a) - gbl(t— (a+¢)).
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(a) Taking Laplace transform, we get

LUt - a)) = - (6) 1 (e(a+€)8>

S 9 S

e—as (1 _ g—€s
T < 5 ) '

(b) We will use I'Hépital’s rule to compute the limit.

) ] e—as 1—e 8

f (0.~} = by 7 ()
<lim _ >
e—0

1—e
€
lim 5¢ >
1

e—0

e—as
S

e—as
S

e—as

= ﬁ(ﬁ‘)

— e*GS

2.5 Convolution

1. We will use the convolution theorem.

L{f(t) x g(t)} = F(s)G(s)

(a) 2{1+t4) = 2{1} 2{t*) = % (j;) _|#

t
(b) Observe that / cosfdf =1« cost.
0

t
,,2”{/ cos@d@} = Z{1*cost}
0

= 2{1} L{cost}
::4(82)11)
[
52+ 1
(c) Z{e' xsint} = L{e'} L{sint} = (311> (32:—1) |- 1)182—1—1)
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t
(d) Observe that / cos@sin(t — 0) df = cost * sint.
0

t
.,2”{/ cosOsin(t — 6) dO} = ZL{cost *xsint}
0

“(#59) (+5)

5
(32 + 1)2

2. We will use the convolution theorem.

LTHPEGE) = F0)+9(t) = [ 1010l —0)dp

1
(a) Let F(s) = 5 and G(s) = %, then

J) =2 H{F(s)} =1 and g(t) =2 {G(s)} = €.

Therefore,

35
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Therefore,
- =z! 8)G(s
e AR O]
= f(t)*g(t)
=e txedt

t
:/ e~ (=030 g9
0
t
e*t/ e*? do
0
40\ |t
(%)
4 /1o
4t
(e —1
- ()

eSt _ eft

4

(c) Let F(s) = é and G(s) = , then

1
s2+1
ft)=2"{F(s)} =1 and g(t) =2 "{G(s)} =sint.

Therefore,

.zl{ ! } — 2 H{F(5)G(5))

s(s?2+1)
= f(t) xg(t)
=1x*sint
t
:/sin9d0
0
t
= —cosf
0
~[[=owt]
(d) Let F(s) = * and G(s) = ———— th
e s—san 3_5(32+1)’ en

f)=2"1{F(s)} =1 and g¢g(t)=2"*{G(s)} =1 —cost.
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Therefore,
—1 1 _ —1
o {52 = 1)} = 2 {F(5)G(s)}

= f(t) xg(t)

= 1% (1 —cost

= /t 1 —cosf@df

0

= (0 —sinb)

0

[ =it

1
3. Since Z{sint} = o then
s

1 t
LN ———— b =sintxsint = [ sinfsin(t —0)do
{(82+1)2} sint * sin /Osm sin( )

By using the identity
. . 1
sinasinf = i(cos(a — B) — cos(a+ B))
with « =6 and =t — 0, we get
sinfsin(t — 6) = %(cos(@ —(t—0)) —cos(6 + (t — 09)))
= %(cos(% —t) — cost).

Therefore,

<)

/t (cos(20 —t) — cost) df
0

<sm(20 D o t) k
0

int 1 in(—t
(Slgl—tcost)—2(sm(2 )—0)

(sint — tcost)

N = N~ N~ N

We can now apply the scaling property

S

2{fwny = —F (2)

w
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to the function f(t) = % (sint — tcost) to get

1 1
f{z (sinwt—wtcoswt)} =—

We can conclude that

- Qw3

-1 { 1 sinwt — wt coswt
( .

4. First observe that

t
L/'e—efa-e)de::e—f*jxn.
0
The equation is then equivalent to
ft)=t+e* +etx f(t).
Take Laplace transform on both sides to get

1 1 F(s)
T2 s—2 s+1°

Solve for F(s) to get

1 1 s+1

s(s—2)
Using partial fractions, we obtain
s+1  —1/2 3/2
s(s—2) s s—2°

Therefore,

1 1 1/1 3 1
Fs)=5+=5—5(~)+%
(s) 27873 <s>+2 (s—2)

Taking the inverse Laplace transform gives the answer.

1
f)=t+——=+=
f(t) Ty Ty




2.5. CONVOLUTION

5. The equation is of the form

F@) = f(t) =1

Take Laplace transform to get

By taking the inverse Laplace transform we obtain the two answers

F(t) = £V6t.

6. First observe that

t
/ e 2yt —0)dh = e xy(t).
0
The equation is then equivalent to
Y (1) + e xy(t) = 1.

Since y(0) = 0, we can take Laplace transform on both sides to get

Y(s) 1
Y =-.
sY(s) + s+2 s
Solve for Y (s) to get
s+2
Y(s) = —.
() s(s+1)2
Using partial fractions, we deduce
2 2 1

Taking the inverse Laplace transform gives the answer.

’y(t) =22 " —tet ‘

39
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Appendix / \

Formulas and Properties

A.1 Table of Laplace Transforms

f@) L{f(t)} = F(s) f(t) LU} = F(s)
1 1
1 eat
s s—a
tn n' attn n'
87L+1 e (S — a)”+1
sin wt v cos wt 5
52 +w? §2 + w2
at o w ¢ s—a
oo Gt oeost [ER
¢ . ¢ QWS " " 52 _ w2
sin w —_— cosw I S
(52 +w?)? (s2 + w?)2
sin wt — wt cos wt 1 e—as
2w3 (52 + w?)? Ut —a) 5
5(t) 1 (S(t — a) e as

41
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A.2 Properties of Laplace Transforms

1.

10.

Definition N
F(s) = 2(0} = [ raya
. Linearity
L{af(t) + Bo(0)} = LS (1)} + BL{g(0)}
. Time differentiation

L{WO} = sF(s) = f(0) LA} = 8*F(s) = £(0) = £(0)
2{fM®)} = "F(s) =" F(0) = = F070(0)

Frequency differentiation

2{t" (1)} = (=1)" F")(s)

. Time shift

LUt —a)} = e Z{f(t + a)}
L e F(s)} = f(t—a)U(t —a)

. Frequency shift

ZL{e"f(t)} = F(s —a)

Convolution
105900 = [ 50ule-0)d0 = 2{50)+5(0) = F)G15)
. Integration
3{/:]”(9) do} - Fis)
. Periodic function

1 T
f(t) has period T = Z{f(t)} = 7/ e St f(t) dt

—sT
1—e5 0

Scaling
2{fwny = —F (2)
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A.3 Trigonometric Identities
1. Pythagorean Identities
1+ cot? 0 = csc? 0

sin? 6 + cos?0 =1 1+ tan? 0 = sec? 6

. Symmetry Identities

sin(—0) = —sin @

. Sum and Difference Identities

sin(« + ) = sina cos B + cos asin 8
cos(a+ ) = cosacos § — sin asin 3
tan o + tan 3

t =
an(a + 6) 1 —tanatan

. Double-Angle Identities
cos 20 = cos® 6 — sin? 0
=1—2sin%6

=2cos?0 -1

. Power-Reducing Identities

1+ cos 26

2
S 9 =
COS 9

. Product-To-Sum Identities

. 1
sinacos 8 = 5
. in 3 1
sinasinf = =
2

3 1
cosacosff ==
2

cos(—6) = cos b

tan(—0) = — tan @

sin(a — ) = sinacos 8 — cos asin 3
cos(a — ) = cosacos B + sin asin 8
tan o« — tan
tan(a — ) = tana—tanf
1+ tanatan

sin 260 = 2sin 6 cos 6

2tan @
tan20 = ———
att 1 —tan?6
1 —cos2
sin29=%9

(sin(a — 3) + sin(a + 3))
(cos(a — B) — cos(a + 3))
(cos(a — B) + cos(a + 3))



44

APPENDIX A. FORMULAS AND PROPERTIES



Appendix

Partial Fractions

B.1 Partial Fractions

Consider a function F(s) expressed as a quotient of two polynomials

where Q(s) has a degree smaller than the degree of P(s). The method of partial
fractions can be summarized as follows.

1. Completely factor Q(s) into factors of the form
(ps+q)™ and (as® +bs +c)"
where as? + bs + c is an irreducible quadratic.

2. For each factor of the form (ps + ¢)™, the partial fractions decomposition
must include the following m terms.

Ay Ay A,
+ St —
ps+q  (ps+q) (ps+q)

3. For each factor of the form (as® + bs + ¢)", the partial fractions decom-
position must include the following n terms.

Bis+ Cy Bos + Cy n B,s+ C,
as? +bs+c  (as?+ bs+ c)? (as? +bs+ )"’

4. Find the values of all the constants.

45



46 APPENDIX B. PARTIAL FRACTIONS

B.2 Cover-up Method

There are several different ways to determine the constants in a partial frac-
tions decomposition. When the denominator has distinct roots, we can use the
cover-up method. Let’s illustrate it with some examples.

Example 1. Consider

s2 +5s+4 A B C
= B.l
(s—=1)(s—3)(s+2) 571+573+5+2 (B-1)

To find A, we could use the following two steps.

1. Multiply both sides of equation (B.1) by (s — 1)(s — 3)(s + 1) to obtain

2 4+55+4=A(s—3)(s+2)+B(s—1)(s+1)+C(s—1)(s - 3).

2. Set s = 1 and solve for A.

1 454+4=A(=2)(3)+04+0 — A:—g

The cover-up method combines these two steps in a single one as follows. To
find A, we cover up (s — 1) and set s = 1 in the left-hand side of (B.1).

s24+5s+4
Ls—1T (s = 3)(s +2)

A=

s=1

We can find constants B and C' in the same way. To find B, we cover up (s — 3)
and set s = 3.

_ s2+5s+4 _ 14
(s—-1)(s—8J(s+2)|_, °
To find C, we cover up (s + 2) and set s = —2.
- s2+5s+4 _ 73
(s=D(s—=3)Ls+2] | __, 15
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If the denominator includes irreducible quadratics terms, the cover-up method
works if we use complex numbers as in the following examples.

Example 2. Consider

s A Bs+C

(s+1)(s2 +4) T TR

Since s +1 =0 if s = —1, then

A S 1
= 5 ==
LAy (s*+4)| _ 5
Since 52 + 4 = 0 if s = 2j, then
s
(Bs + O)s=2j = ——————
2
(s+1) (s=+4) =2
, 2j
2B =
ITC=1Tg;
9 <12j>
RCE ANy
2544
==

The real and imaginary parts of the complex numbers on both sides are equal.
We conclude that

2 1

2B=- =— B=-

5 5
and 4
C=-.

5
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Example 3. Consider

82

(s+2)(s?+6s+13)°

F(s) =
By completing the square, we get
§2+6s+13=(s+3)% +4.
We can look for a partial fractions decomposition of F(s) in the form

s2 A B(s+3)+C

(s+2)(s?24+65+13) s+2 (s+3)2+4"

Observe that by using B(s+3)+ C instead Bs+ C, we make it a little bit easier
since we do not have to solve a linear system to find B and C.

Since s +2 =0 if s = —2, then

e 52 4
— _ S
(42 (s> +65+13)| __, 5
Since 52 + 65+ 13 = (s +3)> + 4 = 0 if s = —3 + 2, then
82
(B(s+3) + O)|s=—3425 = 5
(s +2) (s> +6s5+13) s=—342j
. (—3+2j)?
2Bj+(C = ————
J (—312j)+2
512§
1425
5125 (—1-2j
1425\ —1-2j
25 —2
9Bj +C = J5 o

The real and imaginary parts of the complex numbers on both sides are equal.
We conclude that

2 1

2B=- — B=-

5 5
and 99
C=—-——.

5
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