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MATLAB makes it easy to perform computations with vectors and matrices. In this document, we
introduce basic MATLAB commands for linear algebra and illustrate them with some examples.

1 Vectors

We can create a row vector.

>> v = [3 5 2]

v =

3 5 2

A column vector is created in a similar way except that semicolons are used to separate the entries.

>> u = [2; 4; 1]

u =

2

4

1

We can perform basic arithmetic of vectors. Note that ending a line with a semicolon suppresses printing
of the output.

>> a = [1 2 3];

>> b = [1 3 5];

>> a+b

ans =

2 5 8

>> b-a

ans =

0 1 2

>> 3*a

ans =

3 6 9

We can compute the norm and dot product of vectors, and we can compute the cross product of two
vectors in R3.

>> norm(a)

ans = 3.7417

>> dot(a,b)

ans = 22
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>> cross(a,b)

ans =

1 -2 1

Example 1. Find the angle 0◦ ≤ θ ≤ 180◦ between the vectors u =
[
3, 2, −1

]
and v =

[
1, −1, 4

]
.

Solution: We use the formula

θ = arccos

(
u · v
‖u‖‖v‖

)
.

The MATLAB command acos returns an angle in radians and the command acosd returns an angle
in degrees.

>> u = [3 2 -1];

>> v = [1 -1 4];

>> theta = acosd( dot(u,v) / (norm(u)*norm(v)) )

theta = 100.89

The answer is θ = 100.89◦.

Example 2. Find a vector perpendicular to the plane passing through the three points

A = (0, 1, 2), B = (2, 3, 1), and C = (4, 5, 2).

Solution: Such a vector is n =
−−→
AB ×

−→
AC.

>> a = [0 1 2];

>> b = [2 3 1];

>> c = [1 5 2];

>> ab = b-a

ab =

2 2 -1

>> ac = c-a

ac =

1 4 0

>> n = cross(ab, ac)

n =

4 -1 6

Example 3. Find the projection of v =
[
1, 2, 3

]
onto u =

[
2, 3, 1

]
.

Solution: The projection is obtained by using

proju(v) =
(u · v
u · u

)
u.

>> v = [1 2 3];

>> u = [2 3 1];

>> proj = (dot(u,v)/dot(u,u))*u

proj =

1.57143 2.35714 0.78571

If rational answers are preferred, we use format rat.

>> format rat

>> proj = (dot(u,v)/dot(u,u))*u

proj =

11/7 33/14 11/14
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2 Matrices

We can create a matrix by using semicolons to separate the rows.

>> A = [1 2; 3 4; 5 6]

A =

1 2

3 4

5 6

We can determine the size of a matrix.

>> size(A)

ans =

3 2

We can find the transpose of a matrix.

>> A’

ans =

1 3 5

2 4 6

We can perform basic arithmetic of matrices.

>> A = [1 2; 3 4];

>> B = [2 1; 5 3];

>> 5*A+2*B

ans =

9 12

25 26

>> A*B

ans =

12 7

26 15

>> A^3

ans =

37 54

81 118

We can compute the determinant and find the inverse of a square matrix.

>> A = [1 2 -1; 2 2 4; 1 3 -3];

>> det(A)

ans =

-2

>> format rat

>> inv(A)

ans =

9 -3/2 -5

-5 1 3

-2 1/2 1
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We can obtain the reduced row echelon form of a matrix.

>> A = [1 2 8; 3 1 9]

A =

1 2 8

3 1 9

>> rref(A)

ans =

1 0 2

0 1 3

We can create an n× n identity matrix with the command eye(n).

>> I = eye(3)

I =

1 0 0

0 1 0

0 0 1

The command diag can be used to quickly create a diagonal matrix.

>> D = diag([4 2 7])

D =

4 0 0

0 2 0

0 0 7

An m× n zero matrix can be created with the command zeros(m,n).

>> zeros(2,3)

ans =

0 0 0

0 0 0

We can get the “ij” entry of a matrix A by using the command A(i,j).

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

1 2 3

4 5 6

7 8 9

>> A(2,3)

ans = 6

We can extract the nth row of A with A(n,:) and the mth column of A with A(:,m).

>> A(2,:)

ans =

4 5 6

>> A(:,3)

ans =

3

6

9
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Example 4. Find the solution of the following linear system.
x+ y + z = 2

−x+ z = 1

2x+ 3y + 5z = 9

Solution: First, we define the augmented matrix of the system.

>> A = [1 1 1 2; -1 0 1 1; 2 3 5 9]

A =

1 1 1 2

-1 0 1 1

2 3 5 9

Next, we find the reduced row echelon form of the augmented matrix.

>> rref(A)

ans =

1 0 0 1

0 1 0 -1

0 0 1 2

We see that the solution of the system is x = 1, y = −1, and z = 2.

Example 5. Find the vector obtained if we rotate around the origin the vector u =

[
2
3

]
by an angle

of π/3 counterclockwise.

Solution: The matrix corresponding to a counterclockwise rotation of angle θ around the origin is given
by

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
The vector obtained after rotation is

v = R(π/3)u.

>> theta = pi/3;

>> R = [cos(theta) -sin(theta); sin(theta) cos(theta)]

R =

0.50000 -0.86603

0.86603 0.50000

>> u = [2; 3];

>> v = R*u

v =

-1.5981

3.2321

Example 6. Find the least squares solution of the following linear system.
3x+ y = 4

x+ y = 1

x+ 2y = 3

Solution: For a linear system in matrix form Ax = b (where A has linearly independent columns), the
least squares solution is given by

x = (ATA)−1ATb.
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>> A = [3 1; 1 1; 1 2]

A =

3 1

1 1

1 2

>> b = [4; 1; 3]

b =

4

1

3

>> inv(A’*A)*A’*b

ans =

1.00000

0.83333

MATLAB offers the shortcut A\b to obtain the least squares solution of a system Ax = b.

>> A\b

ans =

1.00000

0.83333

>> format rat

>> A\b

ans =

1

5/6

The least squares solution of the system is x = 1, y = 5/6 ≈ 0.83333.

3 Eigenvalues and Eigenvectors

We can find the eigenvalues of a square matrix A with the command eig(A).

>> A = [1 1 2; 1 2 1; 2 1 1]

A =

1 1 2

1 2 1

2 1 1

>> eig(A)

ans =

-1

1

4

The characteristic polynomial of matrix A is obtained with the command poly(A).

>> poly(A)

ans =

1 -4 -1 4

The characteristic polynomial is then

λ3 − 4λ2 − λ+ 4 = 0.
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Although it is better to use the built-in command eig, an alternative method to find the eigenvalues
of A is by finding the roots of the characteristic polynomial.

>> roots(poly(A))

ans =

-1

1

4

In order to obtain the eigenvectors of A, we need to set two variables equal to eig(A).

>> [P, D] = eig(A)

P =

0.70711 0.40825 0.57735

2.0777e-16 -0.8165 0.57735

-0.70711 0.40825 0.57735

D =

-1 0 0

0 1 0

0 0 4

The eigenvalues are on the diagonal of D and the corresponding eigenvectors are the columns of P .
Note that MATLAB always returns the eigenvectors as unit vectors. For our example, the eigenvalues
and eigenvectors of A are the following.

λ1 = −1, v1 =
1√
2

 1
0
−1

 ≈
 0.70711

0
−0.70711



λ2 = 1, v2 =
1√
6

 1
−2

1

 ≈
 0.40825
−0.8165
0.40825


λ3 = 4, v3 =

1√
3

1
1
1

 ≈
0.57735

0.57735
0.57735


We can verify that

A = PDP−1.

>> P*D*inv(P)

ans =

1 1 2

1 2 1

2 1 1

4 Complex Numbers

Complex numbers can be entered in MATLAB as follows.

>> z = 3 + 4i

z = 3 + 4i

We can find the real and imaginary part of a complex number.
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>> real(z)

ans = 3

>> imag(z)

ans = 4

We can find the polar form of a complex number z with r ≥ 0 and −π < θ ≤ π.

z = r(cos θ + i sin θ) = reiθ

>> z = 3 + 4i;

>> r = abs(z)

r = 5

>> theta = arg(z)

theta = 0.92730

>> r*exp(i*theta)

ans = 3 + 4i

We can perform basic arithmetic of complex numbers.

>> z1 = 2 + 5i;

>> z2 = 3 - 2i;

>> z1+z2

ans = 5 + 3i

>> z1*z2

ans = 16 + 11i

>> z1/z2

ans = -0.30769 + 1.46154i

>> format rat

>> z1/z2

ans = -4/13 + 19/13i

We can use MATLAB to find numerical roots (real or complex) of any polynomial. For example, let’s
find the roots of

x3 − 10x2 + 41x− 50 = 0.

>> p = [1 -10 41 -50];

>> roots(p)

ans =

4.0000 + 3.0000i

4.0000 - 3.0000i

2.0000 + 0.0000i

The roots are
4 + 3i, 4− 3i, and 2.

As we’ll see in the following example, MATLAB can find complex eigenvalues and eigenvectors of a
square matrix.
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Example 7. Find the eigenvalues and eigenvectors of the matrix

A =

1 2 −2
2 5 −2
4 12 −5

 .
Solution: Let’s first enter the matrix.

>> A = [1 2 -2; 2 5 -2; 4 12 -5]

A =

1 2 -2

2 5 -2

4 12 -5

We can first find the eigenvalues.

>> eig(A)

ans =

1 + 2i

1 - 2i

-1 + 0i

Let’s now find the eigenvectors.

>> [P, D] = eig(A)

P =

0.00000 + 0.40825i 0.00000 - 0.40825i 0.70711 + 0.00000i

0.40825 - 0.00000i 0.40825 + 0.00000i 0.00000 + 0.00000i

0.81650 + 0.00000i 0.81650 - 0.00000i 0.70711 + 0.00000i

D =

1 + 2i 0 0

0 1 - 2i 0

0 0 -1 + 0i

We see that the eigenvalues and corresponding eigenvectors are

λ1 = 1 + 2i, v1 =
1√
6

i1
2

 ≈
0.40825i

0.40825
0.81650



λ2 = 1− 2i, v2 =
1√
6

−i1
2

 ≈
−0.40825i

0.40825
0.81650


λ3 = −1, v3 =

1√
2

1
0
1

 ≈
0.70711

0
0.70711


Example 8. Find the three cube roots of -27.

Solution: We have to find the roots of
x3 + 27 = 0.

This is equivalent to
x3 + 0x2 + 0x+ 27 = 0.
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>> p = [1 0 0 27];

>> roots(p)

ans =

-3.0000 + 0.0000i

1.5000 + 2.5981i

1.5000 - 2.5981i

The three roots are

−3,
3

2
+

3
√

3

2
i ≈ 1.5000 + 2.5981i, and

3

2
− 3
√

3

2
i ≈ 1.5000− 2.5981i.

? ? ?
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