Linear Algebra with MATLAB

Gilles Cazelais

April, 2012

MATLAB makes it easy to perform computations with vectors and matrices. In this document, we introduce basic MATLAB commands for linear algebra and illustrate them with some examples.

1 Vectors

We can create a row vector.

>> v = [3 5 2] v = 3 5 2

A column vector is created in a similar way except that semicolons are used to separate the entries.

```
>> u = [2; 4; 1]
u =
2
4
1
```

We can perform basic arithmetic of vectors. Note that ending a line with a semicolon suppresses printing of the output.

We can compute the norm and dot product of vectors, and we can compute the cross product of two vectors in \mathbb{R}^3 .

```
>> norm(a)
ans = 3.7417
>> dot(a,b)
ans = 22
```

>> cross(a,b) ans = 1 -2 1

Example 1. Find the angle $0^{\circ} \le \theta \le 180^{\circ}$ between the vectors $\mathbf{u} = \begin{bmatrix} 3, & 2, & -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1, & -1, & 4 \end{bmatrix}$. Solution: We use the formula

$$\theta = \arccos\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right).$$

The MATLAB command **acos** returns an angle in radians and the command **acosd** returns an angle in degrees.

>> u = [3 2 -1]; >> v = [1 -1 4]; >> theta = acosd(dot(u,v) / (norm(u)*norm(v))) theta = 100.89

The answer is $\theta = 100.89^{\circ}$.

Example 2. Find a vector perpendicular to the plane passing through the three points

$$A = (0, 1, 2), \quad B = (2, 3, 1), \text{ and } C = (4, 5, 2).$$

Solution: Such a vector is $\mathbf{n} = \overrightarrow{AB} \times \overrightarrow{AC}$.

Example 3. Find the projection of $\mathbf{v} = \begin{bmatrix} 1, & 2, & 3 \end{bmatrix}$ onto $\mathbf{u} = \begin{bmatrix} 2, & 3, & 1 \end{bmatrix}$. Solution: The projection is obtained by using

$$\operatorname{proj}_{\mathbf{u}}(\mathbf{v}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}.$$

>> proj = (dot(u,v)/dot(u,u))*u proj = 11/7 33/14 11/14

2 Matrices

We can create a matrix by using semicolons to separate the rows.

>> A = [1 2; 3 4; 5 6] A = 1 2 3 4 5 6

We can determine the size of a matrix.

>> size(A) ans = 3 2

We can find the transpose of a matrix.

>> A' ans = 1 3 5 2 4 6

We can perform basic arithmetic of matrices.

```
>> A = [1 2; 3 4];
>> B = [2 1; 5 3];
>> 5*A+2*B
ans =
       9 12
      25 26
>> A*B
ans =
     12
         7
     26 15
>> A^3
ans =
           54
      37
      81 118
```

We can compute the determinant and find the inverse of a square matrix.

>> A = [1 2 -1; 2 2 4; 1 3 -3];

We can obtain the reduced row echelon form of a matrix.

We can create an $n \times n$ identity matrix with the command eye(n).

```
>> I = eye(3)
I =
1 0 0
0 1 0
0 0 1
```

The command diag can be used to quickly create a diagonal matrix.

```
>> D = diag([4 2 7])
D =
4 0 0
0 2 0
0 0 7
```

An $m \times n$ zero matrix can be created with the command zeros(m,n).

```
>> zeros(2,3)
ans =
0 0 0
0 0 0
```

We can get the "ij" entry of a matrix A by using the command A(i,j).

We can extract the n^{th} row of A with A(n,:) and the m^{th} column of A with A(:,m).

Example 4. Find the solution of the following linear system.

$$\begin{cases} x + y + z = 2 \\ -x + z = 1 \\ 2x + 3y + 5z = 9 \end{cases}$$

Solution: First, we define the augmented matrix of the system.

```
>> A = [1 1 1 2; -1 0 1 1; 2 3 5 9]
A =
1 1 1 2
-1 0 1 1
2 3 5 9
```

Next, we find the reduced row echelon form of the augmented matrix.

```
>> rref(A)
ans =
1 0 0 1
0 1 0 -1
0 0 1 2
```

We see that the solution of the system is x = 1, y = -1, and z = 2.

Example 5. Find the vector obtained if we rotate around the origin the vector $\mathbf{u} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ by an angle of $\pi/3$ counterclockwise.

Solution: The matrix corresponding to a counterclockwise rotation of angle θ around the origin is given by

$$R(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

 $\mathbf{v} = R(\pi/3)\mathbf{u}.$

The vector obtained after rotation is

Example 6. Find the least squares solution of the following linear system.

$$\begin{cases} 3x + y = 4\\ x + y = 1\\ x + 2y = 3 \end{cases}$$

Solution: For a linear system in matrix form $A\mathbf{x} = \mathbf{b}$ (where A has linearly independent columns), the least squares solution is given by

$$\overline{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.$$

MATLAB offers the shortcut A b to obtain the least squares solution of a system $A \mathbf{x} = \mathbf{b}$.

The least squares solution of the system is x = 1, $y = 5/6 \approx 0.83333$.

3 Eigenvalues and Eigenvectors

We can find the eigenvalues of a square matrix A with the command eig(A).

The characteristic polynomial of matrix A is obtained with the command poly(A).

>> poly(A) ans = 1 -4 -1 4

The characteristic polynomial is then

$$\lambda^3 - 4\lambda^2 - \lambda + 4 = 0.$$

Although it is better to use the built-in command eig, an alternative method to find the eigenvalues of A is by finding the roots of the characteristic polynomial.

In order to obtain the eigenvectors of A, we need to set two variables equal to eig(A).

>> [P, D] = eig(A) P = 0.70711 0.40825 0.57735 2.0777e-16 -0.8165 0.57735 -0.70711 0.40825 0.57735 D = -1 0 0 0 1 0 0 0 4

The eigenvalues are on the diagonal of D and the corresponding eigenvectors are the columns of P. Note that MATLAB always returns the eigenvectors as unit vectors. For our example, the eigenvalues and eigenvectors of A are the following.

$$\lambda_{1} = -1, \quad \mathbf{v}_{1} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \approx \begin{bmatrix} 0.70711\\0\\-0.70711 \end{bmatrix}$$
$$\lambda_{2} = 1, \quad \mathbf{v}_{2} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\-2\\1 \end{bmatrix} \approx \begin{bmatrix} 0.40825\\-0.8165\\0.40825 \end{bmatrix}$$
$$\lambda_{3} = 4, \quad \mathbf{v}_{3} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1\\1\\1 \end{bmatrix} \approx \begin{bmatrix} 0.57735\\0.57735\\0.57735 \end{bmatrix}$$

We can verify that

$$A = PDP^{-1}.$$

>> P*D*inv(P) ans = 1 1 2 1 2 1 2 1 1

4 Complex Numbers

Complex numbers can be entered in MATLAB as follows.

>> z = 3 + 4i z = 3 + 4i

We can find the real and imaginary part of a complex number.

>> real(z)
ans = 3
>> imag(z)
ans = 4

We can find the polar form of a complex number z with $r \ge 0$ and $-\pi < \theta \le \pi$.

 $z = r(\cos\theta + i\sin\theta) = re^{i\theta}$

>> z = 3 + 4i; >> r = abs(z) r = 5 >> theta = arg(z) theta = 0.92730 >> r*exp(i*theta) ans = 3 + 4i

We can perform basic arithmetic of complex numbers.

>> z1 = 2 + 5i; >> z2 = 3 - 2i; >> z1+z2 ans = 5 + 3i >> z1*z2 ans = 16 + 11i >> z1/z2 ans = -0.30769 + 1.46154i >> format rat

>> z1/z2 ans = -4/13 + 19/13i

We can use MATLAB to find numerical roots (real or complex) of any polynomial. For example, let's find the roots of

$$x^3 - 10x^2 + 41x - 50 = 0.$$

The roots are

4 + 3i, 4 - 3i, and 2.

As we'll see in the following example, MATLAB can find complex eigenvalues and eigenvectors of a square matrix.

Example 7. Find the eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} 1 & 2 & -2 \\ 2 & 5 & -2 \\ 4 & 12 & -5 \end{bmatrix}.$$

Solution: Let's first enter the matrix.

>> A = [1 2 -2; 2 5 -2; 4 12 -5] A = 1 2 -2 2 5 -2 4 12 -5

We can first find the eigenvalues.

>> eig(A) ans = 1 + 2i 1 - 2i -1 + 0i

Let's now find the eigenvectors.

We see that the eigenvalues and corresponding eigenvectors are

$$\lambda_{1} = 1 + 2i, \quad \mathbf{v}_{1} = \frac{1}{\sqrt{6}} \begin{bmatrix} i\\1\\2 \end{bmatrix} \approx \begin{bmatrix} 0.40825i\\0.40825\\0.81650 \end{bmatrix}$$
$$\lambda_{2} = 1 - 2i, \quad \mathbf{v}_{2} = \frac{1}{\sqrt{6}} \begin{bmatrix} -i\\1\\2 \end{bmatrix} \approx \begin{bmatrix} -0.40825i\\0.40825\\0.81650 \end{bmatrix}$$
$$\lambda_{3} = -1, \quad \mathbf{v}_{3} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\1 \end{bmatrix} \approx \begin{bmatrix} 0.70711\\0\\0.70711 \end{bmatrix}$$

Example 8. Find the three cube roots of -27.

Solution: We have to find the roots of

$$x^3 + 27 = 0.$$

This is equivalent to

$$x^3 + 0x^2 + 0x + 27 = 0.$$

The three roots are

$$-3, \quad \frac{3}{2} + \frac{3\sqrt{3}}{2}i \approx 1.5000 + 2.5981i, \quad \text{and} \quad \frac{3}{2} - \frac{3\sqrt{3}}{2}i \approx 1.5000 - 2.5981i.$$

* * *