Review for Test 1 :
truth tables:
is $\overline{\bar{A} \bar{B}}(\bar{A}+\bar{B})$ logically equivalent to zero?

A	B	\bar{A}	\bar{B}	$\bar{A} \bar{B}$	$\overline{\bar{A} \bar{B}}$	$\bar{A}+\bar{B}$	$\overline{\bar{A} \bar{B}}(\bar{A}+\bar{B})$
0	0	1	1	1	0	1	0
0	1	1	0	0	1	1	1
1	0	0	1	0	1	1	1
1	1	0	0	0	1	0	0

No
simplify $(\bar{\rho} \vee \bar{q}) \wedge(\bar{p} \vee q)$

ρ	q	$\bar{\rho}$	\bar{q}	$\bar{\rho} \vee \bar{q}$	$\bar{\rho} \vee q$	$(\bar{\rho} \vee \bar{q}) \wedge(\bar{\rho} \vee q)$
0	0	1	1	1	1	1
0	1	1	0	1	1	1
1	0	0	1	1	0	0
1	1	0	0	0	1	0

represent $q \vee(p \wedge q)$ on a Venn diagram by shading in the appropriate regions. Show intermediate steps on separate sketches and clearly label them to get full credit.

same instructions for

$\bar{\rho}$

What values can n take if 888_{n} is a legal number?

$$
\text { base } 4 \text { has }
$$

$$
\begin{aligned}
& n>8 \\
& n \geq 9 \\
& n=9,10,11, \ldots
\end{aligned}
$$

$$
\text { digits } 0,1,2,3
$$

negation of all:
you have 5 marbles, which are either
red or blue
how many can be blue? $0,1,2,3,4,5$
if all marbles are blue, then S are blue if not all we blue, then can hare $0,1,2,3$ or 4 blue

$$
\begin{aligned}
& \text { not all }=\text { at least one is not } \\
& \text { none }=0
\end{aligned}
$$

