Section 1.1: Decimal and Octal
decimal: base 10 (why? ten fingers)
historical rote: (will not be tested)
Sumerians / Babylonians used base 60 Mayans used base 20 Oksapmin used base 27
decimal:

4
5
6
7 -we doit have a single 8 symbol fo "ten"
9
$10 \leftarrow$ ane ten, no ares
$11 \leqslant$ are ten, one are
$12 t$ ore ten, two ones
the number 23 means:

$$
\gamma \approx
$$

$$
\begin{aligned}
& 入 \uparrow \\
& 2 \text { tens } 3 \text { ones } \\
& 2 \text { of the base } 3 \text { leftover } \\
& \begin{array}{l}
\text { 日 } \\
\text { 目 }+ \text { ロロロ } \\
\text { 时 }
\end{array}
\end{aligned}
$$

What abate 123？
λ
I hundred

$$
\begin{aligned}
123 & =1 \times 100+2 \times 10+3 \times 1 \\
& =1 \times 10^{2}+2 \times 10^{1}+3 \times 10^{0}
\end{aligned}
$$

for bases other than ten，it＇s the same idea！
let＇s look at base 4：

notation: 123_{4}

- subscript is the base if no subscript, default is 10

$$
\begin{aligned}
123_{4} & =1 \times 4^{2}+2 \times 4^{1}+3 \times 4^{0} \\
& =16+8+3 \\
& =27+27_{10}
\end{aligned}
$$

example: convert the following numbers to decimal
a) $2134=2 \times 4^{2}+1 \times 4^{1}+3 \times 4^{0}=39$
b) $30124=3 \times 4^{3}+0 \times 4^{2}+1 \times 4^{1}+2 \times 4^{0}=198$

What bases are commonly used in computing?

$$
\begin{aligned}
& \text { binary -base } 2 \\
& \text { octal 1 -base } 8 \\
& \text { hexadecimal - base } 16
\end{aligned}
$$

octal: base 8

decimal	octal
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	10_{8}
9	118
10	12_{8}
11	13_{8}
12	14_{8}
13	19_{8}
14	16_{8}

13	15_{8}
14	16_{8}
15	17_{8}
16	20_{8}

example: convert to decimal:
a) $72_{8}=7 \times 8^{1}+2 \times 8^{\circ}=58$
b) 5604_{8} : $5 \times 8^{3}+6 \times 8^{2}+0 \times 8^{1}+4 \times 8^{0}=2948$
example: convert to decimal:
a) $21 \partial_{3}=2 \times 3^{2}+1 \times 3^{1}+2 \times 3^{0}=23$
example: what's wrong with writing 215_{3} ?
working in base 3, only allowed digits are 0,1,2 5 is not allowed
note: in base 10 , there are 10 digits $(0,1,2,3, \ldots 9)$

4	4	$(0,1,2,3)$
8	8	$(0,1,2,3$

(0,1,2,3)
$(0,1,2,3, \ldots 7)$

