Section 1.2: Binary and Hexadecimal
binary = base 2, so only has two diets (0,1)

decimal	binary
0	0
1	1
2	10_{2}
3	112
4	100_{2}
5	1012
6	110_{2}
7	111_{2}
8	1000_{2}
9	10012
10	1010_{2}

example: convert the following nina ry numbers into decimal
a)

$$
\begin{aligned}
1010_{2} & =1 \times 2^{3}+0 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \leftharpoonup \text { can omit } \\
& =8+0+2+0 \\
& =10
\end{aligned}
$$

b)

$$
\begin{aligned}
101110_{2} & =1 \times 2^{5}+0 \times 2^{4}+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& =32+0+8+4+2+0 \\
& =46
\end{aligned}
$$

hexadecimal: base 16

decimal	hexadecimal
0	0

| \cdots | 0 |
| :---: | :---: | :---: |
| 0 | 1 |
| 1 | 2 |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |
| 5 | 6 |
| 6 | 7 |
| 7 | A_{16} |
| 8 | A_{16} |
| 9 | C_{16} |
| 10 | D_{16} |
| 11 | E_{16} |
| 12 | F_{16} |
| 13 | 10_{16} |
| 14 | need sixteen digits |
| 15 | for |
| 16 | |

So, in hexadecimal,

$$
\begin{aligned}
& A_{16}=10 \\
& B_{16}=11 \\
& C_{16}=12 \\
& D_{16}=13 \\
& E_{16}=14 \\
& F_{16}=15
\end{aligned}
$$

so $D \subset A D_{16}$ is a number! what is it in decimal?

$$
\begin{aligned}
D E A D_{16} & =D \times 16^{3}+E \times 16^{2}+A \times 16^{1}+D \times 16^{\circ} \leftarrow \underset{\substack{\text { Can skip } \\
\text { this step }}}{ } \\
& =13 \times 16^{3}+14 \times 16^{2}+10 \times 16^{1}+13 \times 16^{\circ} \\
& =53248+3584+160+13 \in \begin{array}{c}
\text { Can skip } \\
\text { this step }
\end{array} \\
& =57005
\end{aligned}
$$

example: convert the following numbers to decimal:
a) $\quad 15_{16}=1 \times 16^{\prime}+5 \times 16^{\circ}=21$
b)

$$
\begin{aligned}
2 B_{16} & =2 \times 16^{1}+B \times 16^{\circ} \\
& =32+11=43
\end{aligned}
$$

c)

$$
\begin{aligned}
C 3_{16} & =C \times 16^{1}+3 \times 16^{\circ} \\
& =12 \times 16+3 \\
& =195
\end{aligned}
$$

d)

$$
\begin{aligned}
98003_{16} & =9 \times 16^{4}+8 \times 16^{3}+0+0+3 \\
& =622595
\end{aligned}
$$

e)

$$
\begin{aligned}
3^{3055} 16 & =B \times 16^{3}+0+5 \times 16^{1}+5 \times 16^{0} \\
& =11 \times 16^{3}+0+5 \times 16+5 \\
& =45141
\end{aligned}
$$

