Section 2.5: Laws of Logic (LOC)
there are connections between logic $\%$ Boolean algebra:

logic	$p \wedge q$	$p \vee q$	\bar{p}	F (false)	T (true)
Boolean algebra	$A B$	$A+B$	\bar{A}	0	
1					

we can show that
$\rho^{\wedge 1} \Leftrightarrow \rho \quad$ by using a truth table

p	1	$\rho^{\wedge} 1$
0	1	0
1	1	1

$$
A \cdot 1=A
$$

2019/09/17
these statements are tire for all possible variables, so we call them laws - in particular, this one is called an identity law
identity laws: there are four of them

$$
\begin{array}{lllll}
\rho & \wedge & \Leftrightarrow & \rho \\
\rho & \vee & 1 & \Leftrightarrow & 1 \\
\rho & \wedge & 0 & \Leftrightarrow & 0 \\
\rho & \vee & 0 & \rho & \rho
\end{array}
$$

but nose these statements are true for all possible variables
since $\quad \rho \vee o \Leftrightarrow \rho$, then

$$
\begin{aligned}
& \bar{q} \vee 0 \Leftrightarrow \bar{q} \\
& r \vee 0 \Leftrightarrow r \\
& \text { (11) } \vee 0 \Leftrightarrow \bar{v} \\
& \overline{\rho \wedge q} \vee 0 \Leftrightarrow \overline{p \wedge q}
\end{aligned}
$$

Why do we care?
example: simplify the following using the laws of $\log i$

- use only one law per line
- state the name of the law you are using

$$
\begin{array}{ccc}
(\rho \wedge 0) & \vee & (\rho \wedge 1) \\
0 & \vee & \rho
\end{array}
$$

identity ρ identity
idempotent

$$
\begin{aligned}
& \rho \wedge \rho \quad \Leftrightarrow \quad \rho \\
& \rho \vee \rho \quad \Leftrightarrow \quad
\end{aligned}
$$

which also means that $\bar{r} \wedge \bar{r} \Leftrightarrow \bar{r}$

$$
\overline{\rho^{\wedge r}} \wedge \overline{\rho^{\wedge r}} \Leftrightarrow \overline{p^{\wedge r}}
$$

complement:

$$
\begin{array}{r}
\overline{\bar{\rho}} \Leftrightarrow \rho \\
\rho \wedge \bar{\rho} \Leftrightarrow 0 \\
\rho \vee \bar{\rho} \Leftrightarrow 1
\end{array}
$$

examples: simplify the following using the complement law:
a) $q \wedge \bar{q} \Leftrightarrow 0$
b) $\quad A B C+\overline{A B C}=1$
c) (II) (I) $=0$
note: for MATH 155, you may omit explicitly whiting the commutative and/or associative laws using a separate step
example: \quad simplify $O \vee \rho$
nitpicker solution
totally acceptable
MATH 155

$$
\begin{gathered}
o \vee \rho \\
\rho \vee 0 \\
p
\end{gathered}
$$

Commutative identity

$$
o v \rho
$$

totally acceptable
MATH 155
solution
simplify using the LOL:

$$
\left.\begin{array}{cccc}
(\bar{\rho} \vee 0) & \wedge(q \vee \bar{q}) & \wedge(1 \vee r) \\
\bar{\rho} & \wedge(q \vee \bar{q}) & \wedge 1 \\
\bar{\rho} & \wedge & 1 & \wedge
\end{array}\right)
$$

$$
\bar{\rho}
$$

$$
\begin{array}{ccc}
(\rho \wedge \bar{\rho}) & \vee & (\rho \vee \bar{\rho}) \\
0 & \vee & 1
\end{array}
$$

1 ore of $\left\{\begin{array}{l}\text { identity } \\ \text { complement } \\ \text { definition of "or" }\end{array}\right.$
complement
(brainteaser)

identity
complement
not: Can skip this step but it's associative identity
\qquad
simplify:

$$
\overline{\rho \vee(q \wedge \bar{r})} \wedge(p \vee(q \wedge \bar{r}))
$$

complement

2019/09/18
simplify:

$$
A(\bar{B} B)+B(A+\bar{A})
$$

$$
A \cdot 0+B \cdot 1
$$

complement

$$
0+B
$$

identity
example: write a simplified expression for each of the following, and state the name of the law you've used
a) $\bar{r} \wedge \bar{r} \Leftrightarrow \bar{r}$ idempotent
b) $\quad A B C+A B C=A B C$
c) $A B C+\overline{A B C}=1$ complement
d) $0+\bar{B}=\bar{B}$ identity
summary:
identity laws: deal with zeros or ones idempotent laws: deal with a variable and/or itself

Complement laws: deal with negations

Commutative associative
 can omit

