Section 2.6: More LOL
Wednesday, September 18, 2019 10:45 AM

De Morgan's :

$$
\begin{aligned}
& \overline{A B}=\bar{A}+\bar{B} \\
& \overline{A+B}=\bar{A} \bar{B}
\end{aligned}
$$

examples: use De Morgan's to rewrite
(1) $\overline{B+C}=\bar{B} \bar{C}$
(2) $\overline{\bar{B}+C}=B \bar{C}$
(3) $\overline{\bar{B}+\bar{C}}=B C$
(4) $\overline{(3)+(1)}=\overline{(11)}$
(5) $\overline{A \bar{C}}=\bar{A}+C$
(6) $\bar{A} C=\overline{A+\bar{C}}$
when would you see this in code?
if $(x=5$ or $y=2)$ then do
else do
under what conditions does the "else" clause
occur?
\Rightarrow when $(x=5$ or $y=2)$ is FACSE in other words, when $x \neq 5$ AnD $y \neq 2$

Distributive:

$$
\begin{aligned}
A(B+C) & =A B+A C \\
A+B C & =(A+B)(A+C)
\end{aligned}
$$

examples: rewrite the following using the distributive law
(1) $\bar{C}(A+C)=\bar{C} A+\bar{C} C$
(2) $(A+B)(A+\bar{B})=A+B \bar{B}$
(3) $\bar{B}+\bar{A} \bar{C}=(\bar{B}+\bar{A})(\bar{B}+\bar{C})$
(4) $\overline{A B}(B+\bar{C})=\overline{A B} B+\overline{A B} \bar{C}$

Absorption:

$$
\begin{aligned}
& A(A+B)=A \\
& A(\bar{A}+B)=A B \\
& A+A B=A
\end{aligned}
$$

$$
A+\bar{A} B=A+B
$$

examples: use the absorption laws to rewr.te the following:

$$
A(A+B)=A
$$

(1) $\bar{C}(\bar{C}+A)=\bar{C}$
(2) $\bar{c}(C+A)=\bar{C} A$
(3) $A B+A B C=A B$
(4) $\overline{A B}+A B C=\overline{A B}+C$

2019/09/19
(5) $\bar{B}+B A=\bar{B}+A$
(6) $C(A+C)=C$
distr.butive: $(\rho \vee q) \wedge(\rho \vee r) \Leftrightarrow \rho \vee(q \wedge r)$
sinplify:

$$
\begin{array}{cl}
(\bar{p} \vee \bar{q}) \wedge(\rho \vee \bar{q}) & \\
\bar{q} \vee(\bar{\rho} \wedge \rho) & \text { distrib } \\
\bar{q} \vee 0 & \text { complem } \\
\bar{q} & \text { identity }
\end{array}
$$

$$
\begin{array}{cc}
\text { simplify } & A B(\bar{A}+\bar{B}) \\
\text { method \#1 } & A B \bar{A}+A B \bar{B} \\
0 \cdot B+A \cdot 0 \\
0+0 \\
0
\end{array}
$$

distil
complement
identity
$\left\{\begin{array}{l}\text { identity } \\ \text { idempotent } \\ \text { definition of "or" }\end{array}\right.$
method \#2:

$$
A B(\bar{A}+\bar{B})
$$

$A B \quad \overline{A B}$
De Morgan'scomplement
prove:

$$
\begin{aligned}
\overline{B \cdot O} & =\bar{A}+\overline{\bar{A} \bar{B}} \\
\bar{O} & =\bar{A}+\overline{\bar{A} \bar{B}} \\
1 & =\bar{A}+\overline{A \bar{B}} \\
1 & =\bar{A}+A+B
\end{aligned}
$$

identity
defriitan of "rot"
De Morgans

$$
1=1+B
$$

complement
identity
QED

Simplify: $\quad \bar{B}(\bar{A}+B)+\bar{A}(\bar{A}+B)$
method \#1

$$
\bar{B} \bar{A}+\bar{A}
$$

\bar{A}
absorption
absorption
method $\# 2: \bar{B}(\bar{A}+B)+\bar{A}(\bar{A}+B)$

$$
\begin{aligned}
& \bar{B} \bar{A}+\bar{B} B+\bar{A} \bar{A}+\bar{A} B \\
& \bar{B} \bar{A}+0+\bar{A} \bar{A}+\bar{A} B
\end{aligned}
$$

$\bar{B} \bar{A}+\bar{A} \bar{A}+\bar{A} B$
$\bar{B} \bar{A}+\bar{A}+\bar{A} B$
distributive
complement
identity
idempotent

$$
\begin{array}{ll}
\bar{A}+\bar{A}(\bar{B}+B) & \text { disturb } \\
\bar{A}+\bar{A} \cdot 1 & \text { complement } \\
\bar{A}+\bar{A} & \text { identity }
\end{array}
$$

$\bar{B} \bar{A}+\bar{A}$ absorption \bar{A}

$\bar{A}+\bar{A}$	identity
\bar{A}	idempotent

method \# 3 (4?)

$$
\begin{array}{cc}
\bar{B}(\bar{A}+B)+\bar{A}(\bar{A}+B) & \\
(\bar{A}+B)(\bar{B}+\bar{A}) & \text { distributive } \\
\bar{A}+B \bar{B} & \text { complement } \\
\bar{A}+0 & \text { identity }
\end{array}
$$

