Section 2.7: The Conditional
Thursday, September 19, 2019 10:44 AM
conditional:

$$
p \rightarrow q
$$

p implies q
"if ρ, then q "
example: If I live in Saanich, then I live in $B C$.
\rightarrow Who's breaking the law handart
example. The following statement is true:
"If Barney is a dog, then Barney has four legs."

Answer the following. questions with "yes", "no", or "maybe".
a) Barney is a dog. Does he have for legs?
b) Barney is not a dos. Does he have for legs?
c) Barney has for legs. Is he a dos?
d) Barney does not hare for legs. Is he a dos?
true: "If Snarks are Boojums," then the Bellman
true: "If Snarks are' Boojums, then the Bellman is incorrect.

Which of the following cannot occur?
ρ is true
a) Snarks are bogus and the Bellman is incorrect.
b) Snarks are not Boojmms and the Bellman is incorrect.
c) Snarks are not Boojums and the Bellman is correct $\}$ a
(d) Snarks ane Boojms and the bellman 3 correct. \}fake you cant have the frost one tree and the second ore false

2019/09/25
the conditional: $\quad \rho \rightarrow q$

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

If I live in saanich, then I live in BC.
example: If lat sleeps in, then she will be lat for class.
$\rho \Rightarrow q$, the conditional
for this conditional,
$q \rightarrow \rho$ is called the converse
is the conditional logically equivalent to the converse?
converse: "If fat was late for class, then pat slept in.
this statement is not logically equivalent to the conditional!
how do we prove it? troth table

p	q	$p \rightarrow q$	$q \rightarrow p$
0	0	1	1
0	1	1	0
1	0	0	1
1	1	1	1

$p \rightarrow q$ is not logically equivalent to $q \rightarrow p$

$$
(p \rightarrow q) \quad \nRightarrow \quad(q \rightarrow p)
$$

example: for the conditional $\rho \rightarrow q$, is it logically equivalent to the contrapositive $\bar{q} \rightarrow \bar{\rho}$?

p	q	\bar{p}	\bar{q}	$p \rightarrow q$	$\bar{q} \rightarrow \bar{p}$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	0	0
1	1	0	0	1	1

Yes

$$
(p \rightarrow q) \Leftrightarrow(\bar{q} \rightarrow \bar{p})
$$

example: write the Contrapositive $\bar{q} \rightarrow \bar{p}$ for the following conditional $\rho \rightarrow q$

If I live in Stanch or Esquimalt, then I live in $B C$.
answer: If I dart live in $B C$, then I doit live in Scanich AND I dart live
in Esquimalt. AN

Why? Saanich or Esqumalt $\Leftrightarrow \overline{\text { Saanich }}$ AND Esquinalt
another perfectly acceptable ensue:
If I don't live in $B C$, then I live in NETTHER Ssanich NOR Esqumalt

What abut the inverse, $\bar{\rho} \rightarrow \bar{q}$?

$$
\text { equivalent } \left.\begin{array}{ll}
\text { Conditional } & \rho \rightarrow q \\
\text { converse } \\
\text { contrapositive } & \bar{q} \rightarrow \rho \\
\text { inverse } & \bar{\rho} \rightarrow \bar{q}
\end{array}\right) \text { equivalent }
$$

the "or" form of the conditional:
$\left.\begin{array}{lllll}p & q & \rho \rightarrow q & \bar{p} & \bar{\rho} q q \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 \\ 1\end{array}\right)$
example: for the following conditionals $\rho \rightarrow q$, rewrite them in the "or "form, $\bar{\rho} v q$
a) If I live in Saanich, then I live in $B C$.
b) If pat sleeps in, then she will be kate for class.
ans wees:
a) I dart live in Saanich or I live in $B C$ (or both).
b) Pat didn't slegp in or she was late for class (ar both).
digression: Will not be tested
Why do we care?
pseudocode:
if $x>3$ then $y=4$ print y
question: if the output is "4", was $x>3$?
consider: $\quad x=5$
$y=7$
if $x>3$ then $y=4$
print y
at put: 4

$$
\begin{aligned}
& x=2 \\
& y=4
\end{aligned}
$$

if $x>3$ then $y=y$
print y

$$
\text { atp LA }=4
$$

same!
but $x>3$ coly in left-hand case

