Section 2.8: The Biconditional
Wednesday, September 25, 2019 11:16 AM
biconditional:
If you get 90° or wisher in Math 155, then you will get an A^{+}and vice versa.
or
If and only if y as get 90% or higher in Math 155, then yo will get an A^{+}

What does it mean?
"if p, then q and if q, then p
$o r$ "if p, then q and if $\bar{\rho}$, then \bar{q} "
or "either ρ and q are both true q they are both false"
notation:

$$
\rho \leftrightarrow q
$$

"if and only if p, then q " (iff p, then q)
"If ρ, then q and vile versa"
example: Consider the following canditicial statements. Do they still make sense when written as a biconditional?
(1) If you eat at Joe's, you will have a good meal.

No
(2) If two lies are perpendiculs, then they meet at a right angle.

Yes
(3) If today is February 14 th , then today is Valentine's Day. Yes
(4) If the car battery is drained, then the car will not stat. No
truth table:

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

example: Is the bicanditians $\quad \rho \leftrightarrow q$ logically equivalent to $(p \rightarrow q) \wedge(q \rightarrow p)$? Use a troth table to justify your answer.

$p \quad q$	$p \leftrightarrow q$	$p \rightarrow q$	$q \rightarrow p$	$(p \rightarrow q) \wedge(q \rightarrow p)$	
0	0	1	1	1	1

1		1		1	
0	0	1	1	1	1
0	1	0	1	0	0
1	0	0	0	1	0
1	1	1	1	1	1

example: The following statement is true:
If and only stacks are Boojums, then the Bellman is incorrect.
a) Snarks are Bodjums. Is the Bellman Correct? p is true so q is the
b) Snarks are not Boojms. Is the bellman correct? Yes q is false
c) The bellman is carect. Are sacks Boojms? No
d) The bellman is incorrect. Are snarks Booms? Yes either ρ and a are both tire or they are both false

