Section 3.3: Geometric Sequences
Thursday, October 3, 2019 10:36 AM and Serer
examples:
(1) $7,14,28,56, \ldots 114688$
(2) $100,20,4,4 / 5, \ldots$
(3) $1 / 2,1 / 4,1 / 8,1 / 6, \ldots 1 / 256$
(4) $24,-16, \frac{32}{3}, \frac{-64}{9}, \ldots$
pattern?
mull by 2 molt by $1 / 5$ $m u 4$ by $1 / 2$
molt by $\frac{-2}{3}$
how to find this?
take any term (except the first) and divide by the greviars term

$$
\text { so } \frac{-16}{24}=\frac{-2.8}{3.8}=\frac{-2}{3} \quad(\text { or }-0 . \overline{6})
$$

geometric sequence \equiv a sequence in which the next term is equal to the previous term multiplied by a constant common ratio $r \Leftarrow$
recursive formula:
example: give a recursive formuk for the sequence

$$
100,20,4,4 / 5, \ldots
$$

X01 Lecture Page 1
geometric with $r=\frac{1}{5}$

$$
\left\{\begin{array}{l}
a_{0}=100 \\
a_{n}=\frac{1}{5} a_{n-1} \quad \text { for } n>0 \\
\quad \text { common ratio }
\end{array}\right.
$$

general formula:
example: find a general formula fo

$$
7,14,28, \ldots
$$

(1)	(2)	(3)		(1)
7,	14,	28,	\ldots	a_{n}
7,	7.2,	$7 \cdot 2^{2}$,	\cdots	$7 \cdot 2^{n-1}$

for this sequence, it; $\quad a_{n}=7 \cdot 2^{n-1}$ for $n \geq 1$
for geometric,

$$
a_{n}=a_{m} r^{n-1} \text { for } n \geqslant m
$$

example: consider the sequence

$$
5,15,45, \ldots
$$

find a) the twelfth term
b) the fiftieth term
answer: geometric with $r=3$

$$
a_{n}=a_{m} r^{n-m} \text { for } n \geq m
$$

if $m=1$, want a_{12} and a_{50}

$$
\begin{aligned}
& a_{n}=5 \cdot 3^{n-1} \\
& a_{12}=5 \cdot 3^{11}=885735 \\
& a_{50}=5 \cdot 3^{49}=1.196 \times 10^{24}
\end{aligned}
$$

give the general formulk for

$$
80,-160, \quad 320, \ldots
$$

answer: geometric wi $r=-2$

$$
\begin{array}{ll}
a_{n}=a_{m} r^{n-m} & \text { for } n \geq m \\
a_{n}=80(-2)^{n-1} & \text { for } n \geq 1
\end{array}
$$

brackets are necessary
note:
$80 *-2^{n-1}$ is not correct
why not?

$$
-2^{2}=-1 \cdot 2^{2}=-4 \text { BEDMAS }
$$

$$
(-2)^{2}=(-2)(-2)=4
$$

how to $f x$?

$$
80(-2) \wedge(n-1)
$$

geometric series: $\quad 7+14+28+\ldots$

$$
S_{k}=\frac{a_{m}\left(1-r^{k}\right)}{1-r}
$$

where a_{m} is the first term and $k \geq 1$ and $r \neq 1$
why? digression: will not be tested

$$
\begin{aligned}
& S_{k}=a_{1}+a_{2}+a_{3}+a_{4}+\ldots a_{k} \\
& \operatorname{add}\left\{\begin{aligned}
& s_{k}=a_{1}+a_{1} r+a_{1} r^{2}+a_{1} r^{3}+\ldots a_{1} r^{k-1} \\
&-r s_{k}=-a_{1} r-a_{1} r^{2}-a_{1} r^{3}-a_{1} r^{4}-a_{1} r^{k} \\
& s_{k}-r S_{k}=a_{1}-a_{1} r^{k} \\
& s_{k}(1-r)=a_{1}\left(1-r^{k}\right) \\
& s_{k}=\frac{a_{1}\left(1-r^{k}\right)}{1-r} \quad \text { where } a_{1}=\text { frost } \\
& \text { term }
\end{aligned}\right.
\end{aligned}
$$

example: for the series $2+10+50+$.
find the sum of the first
a) twelve terms
b) fifty terms
answer: geometric with $r=5$

$$
\begin{aligned}
S_{k} & =\frac{a_{m}\left(1-r^{k}\right)}{(1-r)} \\
& =\frac{2\left(1-5^{k}\right)}{1-5}
\end{aligned}
$$

so $S_{12}=\frac{2\left(1-5^{12}\right)}{1-5}=122070312$

$$
\text { or } \quad 1.22 \times 10^{8}
$$

for scientific notation, please give at least two decimal places
$2019 / 10 / 8$
what about $1 / 4+1 / 16+1 / 64+\ldots$?
how do we make this wok?

$$
\text { let's try } \quad S_{k}=\frac{a_{m}\left(1-r^{k}\right)}{1-r}
$$

$$
S_{\infty}=\frac{a_{m}\left(1-r^{\infty}\right)}{1-r}
$$

but what is c^{∞} ?

$$
\begin{aligned}
& \text { let's consider }\left(\frac{1}{4}\right)^{n} \\
& \text { as } n \rightarrow \infty, \infty, 0 \\
& \text { approaches }
\end{aligned} \quad\left(\frac{1}{4}\right)^{n} \rightarrow 0
$$

bu only for

$$
-1<r<1
$$

$$
\text { or }|r|<1
$$

then

$$
\begin{aligned}
& S_{\infty}=\frac{a_{m}\left(1-d^{0}\right)}{1-r} \\
& S_{\infty}=\frac{a_{m}}{1-r} \text { for }-1<r<1
\end{aligned}
$$

so, back to the original question

$$
1 / 4+1 / 16+1 / 64+\ldots
$$

geometric with $r=1 / 4$

$$
\text { is }-1<r<1 ? \text { yes }
$$

$$
S_{\infty}=a_{m}
$$

$$
\begin{aligned}
& \overline{1-r} \\
= & \frac{1 / 4}{1-1 / 4}=\frac{1 / 4}{3 / 4}=\frac{1}{4} \cdot \frac{4}{3}=\frac{1}{3}
\end{aligned}
$$

evaluate: $\quad 24-16+\frac{32}{3}-\ldots$
geometric with $r=\frac{-16}{24}=\frac{-2.8}{3.8}=\frac{-2}{3}$
B $-1<r<1$?

$$
\begin{aligned}
& S_{\infty}=\frac{a_{m}}{1-r} \\
&=\frac{24}{1+2 / 3}=\frac{24}{5 / 3}=24 \cdot \frac{3}{5}=\frac{72}{5} \\
& \text { or } 14.4
\end{aligned}
$$

evaluate

$$
12+18+27+\ldots
$$

is $-1<r<1$?
answer: S_{∞} is undefined ar S_{∞} does nat exist (DNE)
note: for this particuld example, you could also say

$$
S_{\infty}=\infty \text { for } 12+18+27+\ldots
$$

but $S_{\infty}=-\infty$ for $-12-18-27-\ldots$
and $S_{\infty}=$ ONE $\quad 12-18+27-\ldots$

2019/10/10
evaluate:

$$
\begin{aligned}
\sum_{j=0}^{\infty} 75\left(\frac{3}{5}\right)^{j} & =75\left(\frac{3}{5}\right)^{0}+75\left(\frac{3}{5}\right)^{1}+75\left(\frac{3}{5}\right)^{2} \cdots \\
& =75+75\left(\frac{3}{5}\right)+75\left(\frac{3}{5}\right)^{2} \cdots
\end{aligned}
$$

geometric with $a_{m}=75$

$$
\begin{aligned}
& r=3 / 5 \\
& \\
& \\
& \\
& -1<r<1 ?
\end{aligned}
$$

$$
\begin{aligned}
S_{\infty}=\frac{a_{m}}{1-r} & =\frac{75}{1-3 / 5}=\frac{75}{2 / 5} \\
& =187.5
\end{aligned}
$$

