Section 4.1: Big 0 and Rates
example: Suppose you wish to download a number of Star Trek episodes. You can either download them at one episode per how, or you call buy them on DVD from Amazon with overnight delivery (let's all that 24 hour delivery).
scenarios: minimum delivery time
(1 hour/episode us 24 hourstatal)

- few episodes, <24, dowloading faster
- break even, $=24$, methods have the same time
- many episodes, >24, overnight faster
and if you dort know how episodes will be required, the "many episodes" scenario is the safest approach

in computing, we are offer trying to minimize the number of operations necessary to ron an algorithm
let's look at the number of steps required for two algorithms
(1) consider adding two S-digit numbers

$$
\begin{array}{r}
12345 \quad \text { best-case: S additions, } \\
+52423 \\
\text { one fo each column } \\
\text { worst-case: S additions, } \\
\text { plus some carries }
\end{array}
$$

(2) Consider multiplyij two 5 -digit numbers

$$
\begin{array}{lr}
12345 & \text { best case: } 25 \text { multiplications } \\
\times \frac{52423}{x \times x \times x} & \text { plus } 9 \text { colin additions } \\
x \times x \times x & \text { worst case: } 25 \text { multolicetions } \\
x \times x \times x & \text { plus } 10 \text { colmmadditions } \\
x \times x \times x & \text { plus lots of carries }
\end{array}
$$

the worrying part is the fact that the number of multiplications goes as the square of the number of digits

100 digits $\rightarrow 10000$ multiplications! Ouch!

Big O:
let n be the number of elements you are considering
(n is the number of disits in your number, or the number of stor Trek episodes)

- size of input
then O is the number of operations needed fo the task
addition: if ya dabble the number of digits, ya approximately double the number of operations

Big 0 notation:
$O(n)$
order n
multiplication: if you double the number of disids, you quadruple the number of operations approximately

$$
O\left(n^{2}\right)
$$

note: I will not ask you to analyze an algorithm and figure at Big

so Big O only talks abut the number of operations for large n and in this graph, $O\left(n^{2}\right)$ will be

