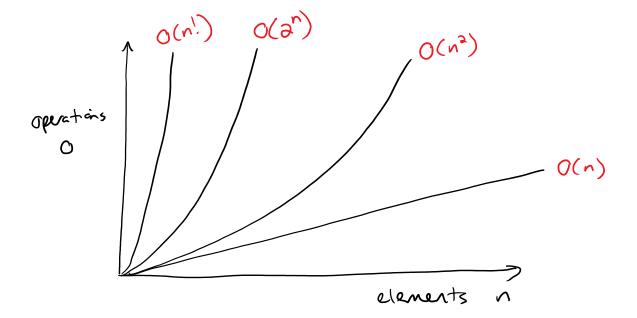
Section 4.2: Factorial and

Friday, October 11, 2019 11:42 AM Exponential Growth

^	polynomic1 N ²	exponentic1	factorial n!
1	1	ð	1
2	4	4	2
3	9	8	6
4	16	16	24
5	25	32	126
(0	100	1024	3628 800
(00	(0000	1024 (.267 × 1030	9.33 × 10 157

ndle:
$$3! = 3 \cdot 2 \cdot 1$$

 $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
 $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$



what I will be testing you on is ranking the rarious orders: O(n), O(n²), etc...

so that you know the general shape of each graph and are able to tell which one is more efficient as a gets large

What if the order of Big 0 looks like $O(n^2 + 2n + 5)$?

^	Nz	2n	\$	n2 + 2n + 5
1 (0	 100 1000	2 20 200	5 5 5	(25 (35
1000	1000 000	2000	5	100 200 5

as a gets very large, the contributions to the total from an and from S become very small in comparison to the contribution from the n2 term

so for large n, $O(n^2 + \partial n + s)$ is approximately equal to $O(n^2)$

$$O(n^2 + \partial_n + s) \approx O(n^2)$$

approximally equal to