Section 4.3: Logarithmic Growth

Suppose you need to find the position of a particular entry in an ordered list

$$
[12,13,27,35,52,71,89]
$$

where in the 1.3t is the number 52?
method \#1: start at the left-most entry and look at each entry in order until you get to the entry of interest
\rightarrow this method is $O(n)$
method \#2: look at the entry in the middle of the list. If it's the entry of interest, stop! If it's not, is the entry of interest before or after the middle entry?

$$
[12,13,27,35,52,71,89]
$$

where is

$$
\uparrow
$$ 52?

is $52=35 ?$ no
is 52 735? yes
now discord half of the list

$$
\begin{array}{cc}
{[52,} & 71,89] \\
\uparrow \\
\text { is } 52=71 \text { ? } & \text { no! } \\
\text { if } 52>71 \text { ? } & \text { no }
\end{array}
$$

now discord agc in

$$
\begin{aligned}
& {[52]} \\
& \text { is } 52=52 ? \text { yes! STop }
\end{aligned}
$$

for method \#2, if your list has one million entries, you reed a maximum of 20 searches to find your entry of interest
\rightarrow essentially, you are solving

$$
2^{n}=1000000
$$

this require a new function called a logarithm

$$
2^{n}=1000000
$$

is equivalent to

$$
n=\log _{2}(1000000)
$$

on a calculator, ir n.. is no bose, defeutis hes 10
on a calculator,
If the ie's no bose, defentis base 10

$$
n=\frac{\log (1000000)}{\log 2}
$$

What you need to know for this course:

what abort $O(n \log n)$?

