Math 156: Tchebysheff \& Empirical Rules

Consider the following sample data set:

$$
1,1,2,2,2,2,2,2,2,3,3,7,8,8,8,8,8,8,9,9
$$

The mean of this data set is 4.75 with standard deviation of 3.18 . It has the following frequency histogram.

Complete the table below by finding the percentage of measurements in the intervals $\bar{x} \pm s, \bar{x} \pm 2 s$ and $\bar{x} \pm 3 s$. Also, state the percentages you'd expect to find in each interval according to the Empirical Rule and Tchebysheff's Theorem.

interval	\# of points	$\%$ of points	Empirical	Teneby	Empirical works?	Tcheby works?	
$\bar{x} \pm s$	1.57 to 7.93	10	500	~ 6800	-	no	-
$\bar{x} \pm 2 s$	-1.61 to 11.11	all	1000	9506	27506	sort of	yes
$\bar{x} \pm 3 s$	-4.79 to 14.29	all	10006	~ 99.708	28906	yes	yes

Should the actual percentages agree with the Empirical Rule? With Tchebysheff?
Empirical: no, the data set is not Unimodal
Tcheby: yes, it works for all date sets

Consider another sample data set in which x is the value of the data point and f is the frequency with which that value occurs.

The mean of this data set is 6.5 with standard deviation 2.0. It has the following histogram.

$\bar{x}=6.5$
$s=20$
Complete the table below.
4,5 to 8.5

interval	\# of points	\% of points	Empirical	Tcheby	Empirical works?	Tcheby works?	
$\bar{x} \pm s$	4.5 to 8.5	28	$66 . \overline{6} 8$	~ 6806	-	yes	-
$\bar{x} \pm 2 s$	2.5 to 10.5	40	95.20	~ 9506	27506	yes	yes
$\bar{x} \pm 3 s$	0.5 to 12.5	all	10006	~ 99.706	≥ 8906	yes	yes

Should the actual percentages agree with the Empirical Rule? With Tchebysheff?
$\begin{gathered}\text { Empirical: yes, because it is himadal } \\ \text { and symmetrical }\end{gathered} \quad \geqslant\left(1-\frac{1}{k^{2}}\right)$
Tcheby: yes, it always woks
where $k>1$

