Section 2.5: The Laws of $\log ^{-} \mathrm{C}$ (LOU)
there are connections between $\log ^{\prime} \mathrm{C}$ and Boolean algebra

we can show that
$\rho \wedge l \Leftrightarrow \rho$
can prove using a both table

similarly, $\quad A \cdot 1=A$
these statements are true fer all possible variables, so we call then laws. In porticulor, this ore is called an identity law.
identity laws: there are four of them:
$p \wedge 1$
$\rho \vee 1 \Leftrightarrow \rho$
$\rho \wedge O$
$\rho \vee O$
but note that these statements are true for
all possible variables:
since quo $\Leftrightarrow \rho$, then

$$
\begin{aligned}
q \vee 0 & \Leftrightarrow q \\
\sim \vee \vee \circ & \Leftrightarrow \sim r \\
(1) \vee 0 & \Leftrightarrow(1) \\
\sim(\rho \wedge q) \vee 0 & \Leftrightarrow \sim(p \wedge q)
\end{aligned}
$$

why do we core?
example: simplify the follaving using the laws of logic

- use only one law of logic per line
- state the name of the law you are using

$$
\begin{array}{cc}
(p \wedge o) & \vee(q \wedge 1) \\
0 & \vee
\end{array}
$$

identity
idempotent

$$
\begin{aligned}
& \rho \wedge \rho \Leftrightarrow \rho \\
& \rho \vee \rho \Leftrightarrow \rho
\end{aligned}
$$

Which means that $\sim r \wedge \sim r \Leftrightarrow \sim r$

$$
\sim(p \wedge r) \vee \sim(p \wedge r) \Leftrightarrow \sim(p \wedge r)
$$

complement

$$
\begin{aligned}
& \sim(\sim \rho) \quad \Leftrightarrow \rho \\
& \rho \wedge \sim \rho \quad \Leftrightarrow
\end{aligned}
$$

$$
\rho \quad \vee \sim \rho \Leftrightarrow 1
$$

Section 2,5: cont id
examples:

$$
\begin{aligned}
& q \wedge \sim q \Leftrightarrow 0 \\
& A B C+\overline{A B C}=1
\end{aligned}
$$

note: for MATH 156, you may omit explicitly writing the commutative and associative kos as seforate step
example: simplify OVp
very careful solution (has extra steps
that you do not reed)
totally acceptable
Math 156
solutions
example: simplify using the COL

$$
\begin{gather*}
(\sim p \vee o) \wedge(q \vee \sim q) \\
\sim \rho(1 \vee \vee) \tag{identity}\\
\sim \rho(q \vee \sim q) \wedge 1
\end{gather*}
$$

$$
\left.\begin{array}{cccccc}
\sim \rho & \wedge & 1 & \wedge & 1 & \text { complement } \\
\sim \rho & \wedge & 1
\end{array}\right)
$$

$$
\sim_{1}
$$

0
V
$\sim(p \vee(q \wedge \sim r)) \wedge(p \vee(q \wedge \sim r))$
。

$$
\begin{array}{cc}
A(\bar{B} B) & +B(A+\bar{A}) \\
A \cdot 0 & +B \cdot 1 \\
0 & +B
\end{array}
$$

B
complement
identity
example: write a simplified expression for each of the following and identify which law you're used
(1) $\sim r \wedge \sim r \Leftrightarrow \quad$ idempotent
(2) $\quad A B C+A B C=A B C$
(3) $\overline{A B C}+A B C=$
$0+\bar{\beta}=\bar{\beta}$
identity
(4) $0+\bar{B}=$
identity laws
idempotent
involve a variable and/or itself
complement
involves negation
$\left.\begin{array}{l}\text { commutative } \\ \text { associative }\end{array}\right\}$ can omit

