Section 4.2: Factorial and Exponential Growth
factorial: n!

$$
\begin{aligned}
& 3!=3 \cdot 2 \cdot 1 \\
& 5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \\
& n!=n(n-1)(n-2) \ldots \cdot 3 \cdot 2 \cdot 1
\end{aligned}
$$

what I will be testing you on is ranking the vorias alders

$$
O(n), O\left(n^{2}\right),
$$

so that you know the shoe of each graph and are able to tell which one is mare efficient as 1 gets large

Big 0 for sums of different functicis
what if gar procedure requires $n^{2}+2 n+5$ steps for a task of size n ? What is Bis?

n	n^{2}	$2 n$	5	$n^{2}+2 n+5$
1	1	2	5	8
10	100	20	5	1.25
100	10000	200	5	10205
1000	1000000	2000	5	1002005

as n gets large, the contributions to the total from $2 n$ and 5 become very small in comparison to the cantrubtion from the n^{2} term
so for large $n, \quad O\left(n^{2}+2 n+5\right) \approx O\left(n^{2}\right)$ \uparrow approximately equal to
to find Big O fo a sum of different fractions:

- locate in the sum the term that grows the fastest
- cemare any coefficients
- what's lett is Big o
examples: Consider procedwes where the number of operators requièd for a task of size n is given below. Find bis ̀ o fo each procedure
a) $9 n+5$
answer: $\quad O(n)$
b) $2^{n}+n^{2}$
$O\left(2^{n}\right)$
c) $4^{2}+4$!
$O(1)$
d) $n!+4!$
$O(n!)$
e) $3 n(n+1)=3 n^{2}+3 n$
$O\left(n^{2}\right)$
digression: will not be tested
so where might you see these types of growth?
- you have a sorted list of sike n, what is the highest value?

$$
O(r)
$$

- you have a loop from 1 to n ($n=$ size of task)

$$
O(n) \quad-l i n e r \text { search }
$$

- you hare two nested loops, each from
- you hare two nested loops, each from 1 to n
$O\left(n^{2}\right)$
bubble sort
- traveling saleman problem

$$
A .
$$

, β
possible
rates:
$A B C$
$A C B$
$B A C$
$B C A$
$C B A$
$C A B$
$=6$ rates

$$
=3!
$$

salesperson has to travel from hame to cities A, B, and C What are all possible rates? which one is most efficient?
$O(n!)$

