Section 4.3: Logarithmic Growth
suppose you need to find the position of a particular entry ii an ordered list:

$$
[12,13,27,35,52,71,89]
$$

where is 52?
method H 1: start it left and look at each entry in the list until you get to the entry of interest
\rightarrow this method is $O(n)$ and is called a linear search
method \#2: look at the entry in the middle of the list. If it's the entry of interest (S2), stop! If it's not, is the entry of interest greater than or less than the middle entry?

If greater than, then discard the bottom half of the list and repeat.

$$
\begin{array}{r}
{[12,13,27,35,52,7!89]} \\
13 \quad 52=35 ? \text { no! } \\
13 \quad 52>35 ? \text { yes! } \\
{[52(7185]} \\
\text { is } 52=71 ? \\
\text { is } 52>71 ? \\
\\
{[52]}
\end{array}
$$

\uparrow
is $52=52$? yes! Stop!
for method $\# 2$, if your list hes one million entries, you reed a maximum of 20 searches to find your entry of interest
essentially, we are solving

$$
2^{n}=1000000
$$

this require's a new function called a logarithm
logarithms:
if $2^{3}=8$, then $3=\log _{2} 8$
the logarithm asks what exponent on the bose siés the other number
log base other number
examples:

$$
\begin{aligned}
& \log _{2} 16=4 \\
& \log _{2} 2=1 \\
& \log _{3} 9=2 \\
& \log _{9} 3=1 / 2 \text { or } 0,5
\end{aligned}
$$

for calculators $\underset{\text { if the base }}{\text { in not }}\left\{\begin{array}{l}\log _{10} 1000=3 \\ \log _{\text {in }} 0.1=-1\end{array}\right.$
if the bose
is not $\left\{\begin{array}{l}\log _{10} 0.1=-1\end{array}\right.$ specifed,
it's base 10
unfortunately, this is not the universal defedit
in computing, the default is bose l
\uparrow
fifth Getter of the alphabet

$$
l=2.7182818284905 \ldots
$$

(irrational, like π and $\sqrt{2}$)
in many programming knguages

$$
\begin{array}{lll}
\log _{10} & \text { means } & \log _{e} \\
\log 10 & \text { means } & \log _{10}
\end{array}
$$

Java:

$$
\begin{aligned}
& \text { Math. } \log \text { (value) } \\
& \text { Math. } \log 10 \text { (valve) }
\end{aligned}
$$

to calculate logarithms with a calculator (most calculators only do base 10 and base e)

$$
\log _{e} \rightarrow \ln \text { fo }
$$

natural log
if we ace solving $2^{n}=1000000$,
then $n=\log _{2}(1000000)$

$$
=\frac{\log 1000000}{\log 2}=\frac{\ln 1000000}{\ln 2}
$$

$$
\begin{aligned}
& =\frac{\log 1000000}{\log 2}=\frac{\ln 1000000}{\ln 2} \\
& \approx 19.93 \rightarrow \text { rand up to } 20
\end{aligned}
$$

so method \#2, which 13 called a binary search, is $O(\log n)$

Section 4.3: $\operatorname{cont}^{\prime}$ 'd

$$
2023 / 10 / 25
$$

What does the graph of a logarithm look like?

x	$y=\log _{2} x$
1	0
2	1
4	2
8	3

What you need to know for this chs

- is always increasing withat limit
- doesnit have a maximum solve -will always eventually be larror than sain nortionlar
- will alwas eventivally be larser than any porticulor
value

What about $O(n \log n)$ ("linearithmic")

