Statistics Portion of Math 156
Wednesday, October 25, 2023 11:03 AM
Chapter 5: Describing Data
Section S.1: Variables and Date
statistics \equiv a branch of applied mathematics concerned with the collection and interpretation of data
ideas of collecting date:

population \equiv the entire set of measurements of interest
note: sometimes not practical ar possible to collect dote an entire population

Section S.1: Cant'd 2023/10/26
sample \equiv a subset of the measurements of interest

- you must ensure that as far as possible that the sample is representative
the sample should look like the population
two types of statistics:
descriptive - procedures used to summarize and describe the important characteristics of a set of date
inferential - procedures used to draw conclusions or make predictions about a population bused on a sample
variable \equiv a characteristic that either
(1) Changes over tine
example: the height of an individual tree measured over a period of years
(2) changes fer different individuals or objects under consideration
example: the height of all trees within a certain ache at a porticuld tine
experimental unit - individual or object on which a variable is measwed
example: we measure the height of a tree
example: we measure the height of a tree
\square
variable
univariate data - resuH of a single vorible measured on experimental units
- length of adult Chinook salmon
bivaciate date - result of two variables
- length and weight of adult Chinook salmon
multivariate date - more than two
qualitative variable - measure is a quality or characteristic
\rightarrow does not result in a numerical value
examples: political porto
nationality
favourite food
quantitative variable - measure is a numerical quantity
examples: height, speed number of students in a class
for quantitative variables, two types:
discrete or continuous
discrete - can only hove finite or countable number of values
example of trite:
values can only be one of:

$$
\{3.75,5.21,8.32,9.21\}
$$

example of constable:
shoe sire: $. . .10,10 \frac{1}{2}, 11, \ldots$
continues: -can be any real number
example: speed
mass
length
note: although height, fo example, is in theory a continues variable
practically speaking, we usually round our measurement to a certain precision Ccerte.i number of decimal places, or to the nearest millimetre)
due to
\rightarrow I imitations of your measuring instrument
\rightarrow limitaticis on objects being measure (fuzziness of

- Irintuitons al objects being measured (fuzziness of a tennis ball)

