\qquad
Instructor: Patricia Wrean

MATH 156-X01
 Practice Test 3B

Total $=\overline{30}$

- All of the work on this test must be your own.
- You may use a scientific calculator. You may not use a calculator with graphing capability or a smartphone app.

GOOD LUCK!

1. (4 points) Consider the following.

$$
\left\{\begin{array}{l}
a_{1}=12 \\
a_{n}=7+a_{n-1} \quad \text { for } n \geq 2
\end{array}\right.
$$

(a) Is this formula recursive or general? Choose one:

(-1) for $19,26,33$
2. (6 points) Consider the following:
$288,144,72,36,18,9$
$r_{\times 1 / 2}$
(a) Give a general formula for a_{n}. Be sure to specify what values to use for the index. Draw a box around your answer.
no box

$$
\begin{aligned}
a_{n} & =a_{m}\left(^{n-m}\right. \\
a_{n} & =288\left(\frac{1}{2}\right)^{n} \text { (or } 0 \leq n \leq 5 \\
a \quad a_{n} & =288\left(\frac{1}{2}\right)^{n-1} \text { for } 1 \leq n \leq 6
\end{aligned}
$$

(b) Give a recursive formula for a_{n}. Be sure to specify what values to use for the index. Draw a box around your answer.

3. (4 points) Consider the following:

$$
13+16+19+\ldots
$$

(a) Circle one: this is

$$
\begin{aligned}
& S_{3}=13+16+19 \\
& S_{5}=13+16+19+22+25
\end{aligned}
$$

4. (5 points) Consider the following.

$$
\sum_{n=4}^{28} 3^{n-2}
$$

(a) Is this a sequence or a series? Choose one:
(b) How many terms does it have?
$k=n-m+1=28-4+1$

(c) Calculate the sum. Show your work below.

25
\qquad

5. (3 points) Label the following as "arithmetic", "geometric" or "neither".
(a) $1,8,27,64, \ldots$
(b) $11,7,3,-1, \ldots \quad d=-4$
\qquad
arithmetic \qquad
(c) $12,-24,48, \ldots \quad r=-2$

6. (2 points) If you look up algorithms on how to sort a list, you will find that in terms of operations, Bubblesort has $O\left(n^{2}\right)$ while Heapsort has $O(n \log n)$.

Based only on this information, which method is more efficient for large values of n ? Indicate the correct choice.
(a) Heapsort
(b) Bubblesort
(c) They both have the same efficiency

Why?
(a) Because n^{2} grows faster than $n \log n$ and bigger is better.
(b) Because n^{2} and $n \log n$ grow at the same rate.
(c) Because $n \log n$ grows slower than n^{2} and fewer operations means that the program will run faster.
(d) There is not enough information to decide.
7. (3 points) Evaluate the following logarithms.
(a) $\log _{8}(64)$
$8^{2}=64$
(b) $\log _{10}(0.1)$
$10^{-1}=0.1$
-1
(c) $\log _{3}(1)$
$3^{0}=1$ \qquad
8. (3 points) The following graph shows the number of operations O required to complete a task of size n for Programs 1 and 2. The number of operations required for Program 1 is a constant, so Program 1 is a horizontal straight line.

Indicate whether the following statements are true or false by selecting the correct answer.
(a) It's possible that for a certain value of n, the two programs are equally efficient. True / False
(b) Program 2 is a better choice than Program 1 for some circumstances. True) False
(c) If Program 2 is $O(\log n)$, then for large values of n it could curve downwards and become more efficient than Program 1.

