\qquad
Instructor: Patricia Wrean

MATH 156
 Test 3, Version B

$$
\text { Total }=\overline{25}
$$

- All of the work on this test must be your own.
- You may use a scientific calculator. You may not use a calculator with graphing capability or a smartphone app. You may not share calculators between students.

GOOD LUCK!

1. (3 points) Label the following as "arithmetic", "geometric" or "neither".
(a) $2,14,98, \ldots$
(b) $36,27,18, \ldots,-108$
(c) $1,8,27,64, \ldots$
2. (4 points) Consider the following list of numbers:
$102,72,42, \ldots$
(a) Give a general formula for a_{n}. Be sure to specify what values to use for the index, and simplify your answer. Draw a box around your answer.
(b) Give a recursive formula for a_{n}. Be sure to specify what values to use for the index. Draw a box around your answer.
3. (2 points) Consider the following.

$$
\left\{\begin{array}{l}
a_{0}=12 \\
a_{n}=5 a_{n-1} \quad \text { for } n \geq 1
\end{array}\right.
$$

Calculate the first three terms:
4. (4 points) Consider the following.

$$
4(5)+5(6)+6(7)+\ldots+69(70)
$$

(a) Write this sum using sigma notation.
(b) How many terms does it have?
(c) Calculate S_{5}.
5. (3 points) Consider a list of numbers that starts at a value of 4 . Every number after that is equal to the previous number times 3 . Find the sum of the first sixty numbers in this list.
6. (2 points) This graph shows the number of operations O required to complete a task of size n elements for Programs 1 and 2, where Program 1 is a straight line and Program 2 is a curved line.

Indicate whether the following statements are true or false.
(a) Program 1 is $O(n)$.

True / False
(b) Program 2 is always a better choice than Program 1.

True / False
(c) Program 1 is always a better choice than Program 2.

True / False
(d) It's possible that for some value of n, that the two programs are equally efficient.

True / False
7. (2 points) Evaluate the following logarithms.
(a) $\log _{10}(0.01)$
(b) $\log _{7}(7)$
8. (2 points) For each of the following procedures, the number of operations needed for a task of size n is given below. Find Big O for each procedure.
(a) $2 \log n+3 n$
(b) $3 n!+5\left(2^{n}\right)$
9. (3 points) Indicate whether the following statements about the $O(\log n)$ curve are true or false.
(a) If n gets large enough, the curve of $O(\log n)$ will eventually curve downward. True / False
(b) No matter how big n is, the curve of $O(\log n)$ will always increase. True / False
(c) If n gets large enough, the curve of $O(\log n)$ will reach a certain value and stay there.

True / False

