Name: \qquad
Instructor: Patricia Wrean

MATH 156
 Test 3, Version B

$$
\text { Total }=\overline{25}
$$

- All of the work on this test must be your own.
- You may use a scientific calculator. You may not use a calculator with graphing capability or a smartphone app. You may not share calculators between students.

GOOD LUCK!

1. (2 points) Label the following as "arithmetic", "geometric" or "neither".
(a) $25,37,49, \ldots$ \qquad
(b) $1,2,6,24, \ldots$ \qquad
$\begin{array}{lll}\triangle 2 \\ \times 2 & \times 3 \\ \times 4\end{array}$
2. (5 points) Consider the following.

$$
a_{n}=3^{n} \quad \text { for } 2 \leq n \leq 12
$$

(a) Calculate the first three terms: \qquad
\qquad , 81

$$
\begin{aligned}
& a_{2}=3^{2}=9 \\
& a_{3}=3^{3}=27 \\
& a_{4}=3^{4}=81
\end{aligned}
$$

(b) Calculate the final term:

$$
a_{12}=3^{12}
$$

(c) Give a recursive formula for a_{n}. Be sure to specify what values to use for the index.

$$
\text { geometric with } r=3
$$

$$
\left\{\begin{array}{l}
a_{2}=9 \\
a_{n}=3 a_{n-1} \\
\end{array} \quad \text { (1) for } \begin{array}{l}
3 \leq n \leq 12 \\
\text { or } \\
2<n \leqslant 12
\end{array}\right.
$$

\qquad

$$
\begin{aligned}
& \text { as }\left\{a_{0}=9\right. \\
& a_{n}=3 a_{n-1} \text { for } 1 \leq n \leq 10 \\
& a_{1}=9 \\
& \left\{a_{n}=3 a_{n-1} \text { for } 2 \leq n \leq 11\right.
\end{aligned}
$$

3. (3 points) Consider the following:

$$
\sum_{n=5}^{21} 4 n=20+24+28+\ldots+\frac{(21)}{84}
$$

(a) How many terms does it have? $k=n-m+1=21-5+1=17$ \qquad
(b) Evaluate the sum. Show your work below.

(2)

$$
\text { arithmetic with } d=4
$$

4. (3 points) Consider the following.

$$
\begin{aligned}
& \stackrel{+5}{\sim} \\
& 10+50+250+\ldots
\end{aligned}
$$

(a) Is this a sequence or a series? Choose one:

sequence series
(b) Calculate the sum, if it exists. If it does not exist, say so and explain briefly. Show your work below.

$$
\begin{aligned}
\text { geometric with } r & =5 \\
-1<r & <1 ? \\
& \text { does not exist }
\end{aligned}
$$

5. (3 points) Consider the arithmetic sequence with first term equal to 42 and final term equal to 162 . The common difference is equal to 5 . How many terms are in this sequence?
```
        an}=\mp@subsup{a}{n}{}+(n-m)
                162=42+(n-1)5
            120=5(n-1)
        24=n-1
        n=25
    Since I Used m=1,
        k:n-m+1=2S-1+1=25
```

6. (2 points) Match the Big O notation with its corresponding curve on the graph. Please note that the curves are labeled $1,2,3$, and 4 going from left to right and that curve 3 is a straight line.

(a) $O(\log n)$
(b) $O(n \log n)$
(c) $O(n)$
\qquad
(d) $O\left(n^{2}\right)$
7. (2 points) Evaluate the following logarithms.
(a) $\log _{2}(64)$
$2^{6}=64$ \qquad
(b) $\log _{5}\left(\frac{1}{5}\right)$

$$
5^{-1}=1 / 5
$$

\qquad
8. (2 points) For each of the following procedures, the number of operations needed for a task of size n is given below. Find Big O for each procedure.
(a) $3 n^{2}+2^{n}$

(b) $(\log n)(2 n+1)=$

each time if only wrote 2^{n}, not $O\left(2^{n}\right)$, etc
9. (3 points) For a task of size n, Program A will always take one thousand steps to run and Program B will take $n \log n$ steps to run. Indicate whether the following statements are true or false.
(a) If you think the task might have a very, very large n, Program A is probably a good choice.
(b) There may be some values of n for which Program B is a more efficient choice than Program A.
(c) Program B has logarithmic growth.

True False
True False

$$
\begin{aligned}
& \uparrow \\
& \text { it's "linearithmic" }
\end{aligned}
$$

