subsets: set $A$ is a subset of $B$ iff every number of $A$ also belongs
to $B$

$$
\begin{aligned}
& A \subseteq B \\
& \uparrow \\
& \text { "is a subset of" }
\end{aligned}
$$

examples:

$$
\begin{aligned}
\{2,3,4\} & \leq N \\
\{2,3\} & \leq\{2,3,4\} \\
\{2,3\} & \leq\{2,3\} \\
\{2,3\} & \not f\{2\}
\end{aligned}
$$

why? $\quad 3 \notin\{2\}$

True or False?

$$
\begin{aligned}
& N \subseteq\{2,3\} \\
& N \leq z \\
& z \subseteq N \\
& z \subseteq Z \\
& \phi \subseteq N
\end{aligned}
$$

$\uparrow$ in fact, $\phi$ is a subset of every set including itself
subsets:
proper subsets: $\quad A \subset B$

- set $A$ is a proper subset of $B$ iff every member of $A$ belongs to $B$ and there is at least one member of $B$ that's not in $A$
examples:

$$
\begin{aligned}
& \{2,3\} \subset\{2,3,4,5, \pi, 15>\} \\
& \{2,3\} \leq\{2,3,4,5, \pi, 157\} \\
& \{2,3\} \notin\{2,3\} \\
& \{2,3\} \leq\{2,3\}
\end{aligned}
$$

True or False:

$$
\begin{array}{ccc}
N & c & Z \\
N & \subseteq & Z \\
\{1,2,3, \ldots\} & & \{\cdots-3,-2,-1,0,1,2,3, \ldots\} \\
N & \subset & N \\
N & \subseteq & N \\
Z & \subset & N \\
\phi & \subset & Z \\
\phi & \subset & \varnothing
\end{array}
$$

$T$

F
T
F

T
F

