Section 1.7: The Algebra of Sets

Wednesday, October 01, 2014 2:30 PM

membership tables

example: draw the membership table for ANA

$$x \in A$$
 $x \in \overline{A}$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in \overline{A}$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in \overline{A}$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in \overline{A}$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in \overline{A}$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in \overline{A}$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in \overline{A}$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in \overline{A}$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$ $x \in A$ $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in (A \land \overline{A})$
 $x \in A$ $x \in A$

if we were to use this table to simplify ANA, we would write:

An
$$\overline{A} = \emptyset$$

note: this must be a set

example: write at the membership table for AUB

A	B	Ā	ĀJB
0	0	1	1
0	l	1	
1	O	0	0
1	1	0	1

example: Are the sets BU(BNA) and AUB equal to each other?

A	В	Ā	B	ĀUB	B1Ā	Bu (Bnā)
0 0 1	<i>O</i> 1 0 1	 	(0 1 0		O I o o	
					AUB =	B U(BNA)

compuler representation of sets

consider the following sets

A = \$1,3,53

use the computer representation of sets to find $\bar{A} \wedge \bar{B}$

		r	3 / (O							
sets	nts 1	2	3	4	ς	G	7	8	9	10	PHETRIA
A	1	0	l	0	(0	0	0	0	0	<u>L</u>
В	l	0	Q	١	0	Ø	1	0	0	1	
Ā	0	l	0	(0	l	1	(((
B	0	ι	1	0	t	(0	ι	١	0	
ĀNB	0	ι	0	0	0	l	0	(l	0	
so A 1 B = {2,6,8,9}											

example: consider the sets
$$A = \{2,4,5,6,7\}$$
, $B = \{1,2,3,7,8\}$ and $U = \{1,2,3,...,8\}$ use the computer represention of sets to find $A \cap B \cup A$