
Section 1.8: contid

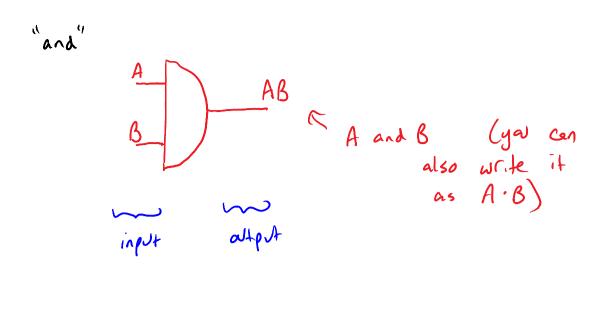
Thursday, October 02, 2014 8:29 AM

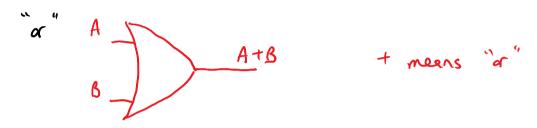
Test #1 on Thursday, Oct 16

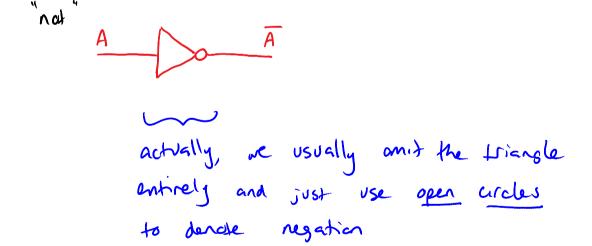
- covers Assignments 1 & 2 (online and hardcapy)
- Sections 1.1 to 1.10 inclusive
- famula sheet 13 the Laws of Logic handast

consider the two circuits below:

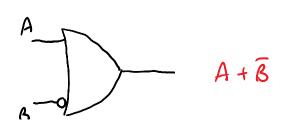



(a) — [.]

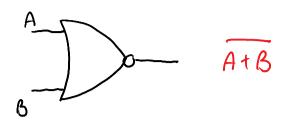

behaves like an and"
- both switches must be
closed ("on") for current
to flow

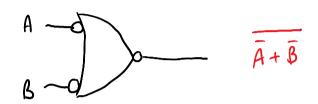

behaves like an "ar"
- if at least one switch is
on, current will flow

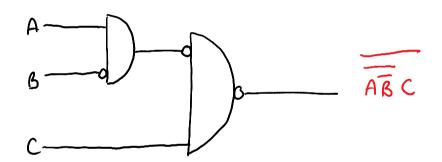
gate representation:


(this I will test)



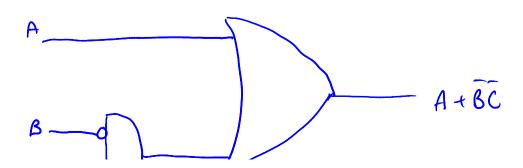




examples: give the atput for the following circuits:












example: draw the gate representation for  $A + \overline{B} \overline{C}$ 

note: do the "and" before the "or"



Sec 1 - Lectures Page 3

B 0 C 0

Boolean Algebra:

algebra in which the voriables can only take on one of two possible values: 0 or 1

"and": the symbol is a dot .
or implied multiplication

A and B = A·B = AB

"or": the symbol is a plus sign +

A & B = A+B

"regation":  $not A = \overline{A}$ 

order of operations:

"and" before "or"

the regation bor behaves like brackets

and you can use brackets to force the order that you want

examples: which operation comes first? and 1 A + BC (then "or") "of" (A + B) C (then "and") "nd" (then "and", then "or") 3 A+ BC "not" (then "and") ĀC 4 (then "not") (S) AC

example: write the first table for A+BC

| A | В | C | B | C | BC | A+Bc |
|---|---|---|---|---|----|------|
| ٥ | 0 | ٥ | ١ |   | (  |      |
| G | 0 | 1 | 1 | 0 | Ø  | 0    |
| 0 | 1 | O | O |   | 0  | 0    |
| 0 | 1 | 1 | O | 0 | 0  | 0    |
| 1 | 0 | 0 | ( | ( | 1  | (    |
| 1 | 0 | t |   | 0 | O  |      |
|   |   | 0 | 0 | 1 | 0  |      |
| 1 | U | 1 | 0 | 0 | 6  | 1    |
|   |   |   |   |   |    |      |