Section 1.9: Laws of Logic Monday, October 06, 2014

8:32 AM

there	are	connecta	s betwee	n sets,	sets/logic/Boolean	
		and	6	"not"		
	logic	pvL	bru	P	Foo	Tol
	sets	ANB	AUB	Â	F~0	U
	Boolean	AB	A+B	Â	O	1

we can show that

Similarly: A 1 U = A by membership table/ Venn diagram

A·I = A by traph table

these statements are true for all possible values of the variable (or all possible sets in the unverse) so we call them laws

-> these ares, in fact are called the identity laws

identity: there are four of them:

but note that these statements are the for all possible variables:

Why do we care?

example: simplify the following using the laws of logic (LOL)

note: use one law per line and be sure to state the name of the law you are using

(p x 0) \ (p x 1)

ο ν ρ

identity

P

identity

idempotent

P 1 P (=) P

P V P (=> P

which also means that

complement

= 6 p

example: simplify the following using the complement law:

- ① q ~ \(\bar{q} \) (=> 0
- (2) ABC + ABC = 1

note: for this class, you may anit writing either the commutative law or the associative law or both as a sporake step

example: simplify Orp

nitpicker-fran-hell solution: pv0 commutative p identity

totally acceptable Math 163 solution:

identity