Section 6.2: Combinations and Permutations
permutation \equiv an ordered grape of r objects chosen from n possibilities withal repetition
example: 4 digit PIN $\rightarrow 4$ digits in withal order from
repetition
10 possibilities
notation:

$$
n \ln =\frac{n!}{(n-r)!}
$$

other commonly used symbols: $\rho_{r}^{n}, \rho(n, r)$
example: How many 5 -digit case-sensitive alphanumeric passwards we there if repetition is not allowed?

$$
\begin{array}{ll}
n=62 \\
r=5
\end{array} \quad 62 \rho_{5}=776520240
$$

is repetition allowed? no \rightarrow either permutation combination
does order matter? yes \rightarrow permutation
no \rightarrow combination
example: haw many ways are there to order a group
ot 5 objects?

$$
54321=5!=120
$$

$$
\stackrel{\text { ar }}{=} \quad{ }_{s} P_{s}=120
$$

not: ${ }^{n} P_{r}=\frac{n!}{(n-r)!}$

$$
{ }_{5} P_{5}=\frac{5!}{0!1}=5!
$$

So, there are r ! ways to arrange r objects

Combination: an unordered gram of r objects chosen withat repetition from n possibilities

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!} \quad\left[=\frac{{ }_{n} P_{r}}{r!}\right]
$$

rote: other commonly used notations:

$$
C_{r}^{n}, \quad C(n, r), \quad\binom{n}{r}
$$

〈insert pizza pace of choice>
example: Pat is ordering pizza from fatso. she has the choice of 3 toppings chosen from a list of 15. How many different pizzas cold she potentially order? * no repetitiar allured

$$
{ }_{15} C_{3}=455
$$

What if, in addition to 3 topping chosen withat repetition from a list of is, you call also choose one alt of 3 different crusts?
\# ways of selecting topping: ${ }_{15} C_{3}$
\# ways of picking crust: $3 C_{1}$

$$
\text { \# pizzas: } \begin{aligned}
& { }_{15} C_{3} \cdot{ }_{3} C_{1} \\
& =455 \cdot 3 \\
& =1365
\end{aligned}
$$

In the $B C$ 6/49 lottery, the wistamer chooses withal repetition six numbers from 49 possibilities. These numbers are then compared with the six numbers drown at randan at the end of the week.

How many different choices call you make that give you exactly three winning numbers? For winning numbers?
three winning numbers:
6 winning number

$$
{ }_{6} C_{3} \cdot{ }_{43} C_{3}
$$

43 losing numbers
ग \uparrow

6 picked yaw have
at end of 3 that
week
match

$$
{ }_{6} C_{3} \cdot{ }_{43} C_{3}=20 \cdot 12341=246820
$$

four winning numbers

$$
{ }_{6} C_{4}{ }_{43} C_{2}=15 \cdot 903=13545
$$

So, what's the total number of choices you call potentially make?

$$
{ }_{49} C_{6}=13,983,816
$$

so, what's your chance of warning the jackpot?

$$
\frac{1}{13,983,816}
$$

