Section 6.3: contd
Monday, December 01, 2014
8:39 AM
note: Sisnup sheet for Makeup Test Day 13 available
-deadline for xO1 8:30 section is wednesday at noon
we will not cover section 6.5
recall :

$$
\frac{P(A \mid B)}{p}=\frac{P(A B)}{P(B)}=\frac{n(A B)}{n(B)}
$$

probability or
A if B
4) $P(T \mid F)=\frac{\rho(T F)}{\rho(F)}=\frac{n(T F)}{n(F)}$

$$
=\frac{5}{30}=\frac{1}{6}
$$

5) $P(F \mid T)=\frac{n(F T)}{n(T)}=\frac{5}{50}=\frac{1}{10}$ or 10^{8}
independent variables vs. dependent scribbles:
consider two events $A \notin B$:
if A is just as likely when you look at the entire population as when you look at only subpopulation β, then we say that the events are independent "A does not depend on B"
examples: $\quad A=$ getting cavities
$B=$ brushing teeth regularly
Do you think that A depends on B ?
The probabability of A (getting cuties) decreases when β (bNsh teth regularly)
so A does depend on B
"A and B are dependent

What probabilities do you compare to determine independence?
$C=$ gettij cavities
B : brushing regulaly
then compare

$$
P(c) \stackrel{?}{=} P(c \mid B)
$$

$$
\stackrel{a r}{=} P(B) \stackrel{?}{=} P(B \mid C)
$$

if they are equal, $C+B$ we independent

Are T and F independent?
compare $P(F)$ with $P(F \mid T)$
$\stackrel{\text { or }}{=} \rho(T)$ with $P(T \mid F)$
if equal, then independent

$$
\left.\begin{array}{l}
P(F)=\frac{n(F)}{n}=\frac{30}{100}=300 \\
P(F \mid T)=100
\end{array}\right\} \text { different }
$$

\therefore events are dependent

