Section 1.4: contd
Monday, September 30, 2013
9:31 AM
square roots:
if $a^{2}=b$, then a is celled a square root of b
if $a \geq 0$, then a is called the principal square root of b and we write that

$$
\sqrt{b}=a
$$

example:

$$
\left.\begin{array}{rl}
3^{2} & =9 \\
(-3)^{2} & =9
\end{array}\right\} \begin{aligned}
& \text { both } 3 \text { and }-3 \text { are } \\
& \text { square roots of } 9
\end{aligned}
$$

and 3 is the poncipel square root of 9:

$$
\sqrt{9}=3
$$

note: $\left.\quad \begin{array}{rl}\sqrt[3]{8} & =2 \\ \sqrt[3]{-8} & =-2\end{array}\right\}$ no ambiguity with
examples:
evaluate

$$
\begin{aligned}
\sqrt{3^{2}+4^{2}} & =\sqrt{9+16} \\
& =\sqrt{25}
\end{aligned}
$$

$=S$
note: $\sqrt{x^{2}+y^{2}} \neq \sqrt{x^{2}}+\sqrt{y^{2}}$

$$
\begin{aligned}
& 3[\sqrt{25+|-11|}\left.+(-2)^{3}\right] \\
&=3[\sqrt{25+11}+(-8)] \\
&=3[6-8] \\
&=-6 \\
& 75 \div(-5)(-3) \div 1 / 2 \cdot 4 \\
&(-15)(-3)(2)(4) \\
&(-30)(-3)(4) \\
& 360
\end{aligned}
$$

evaluating algebraic expressions:
if a, b, and c are $-3,-2$, and -1 , respectively, evaluate:

$$
\begin{aligned}
a^{2}-b^{2} & =(-3)^{2}-(-2)^{2} \\
& =9-4=5 \\
\frac{c-a}{c-b} & =\frac{-1-(-3)}{-1-(-2)}=\frac{-1+3}{-1+2}=\frac{2}{1}=2
\end{aligned}
$$

note: $\quad x_{1}, x_{2}, x_{3}, \ldots$
subscripts denote different variables

$$
\begin{aligned}
& x_{1}=5 \\
& x_{2}=-3
\end{aligned}
$$

