Section 33. contd
Thursday, October 17, 2013
9:34 AM
sketch the graph of $\left.y=\left(-\frac{2}{3}\right) x+1\right)^{y \text {-int }}$

standard form:

$$
A x+B y=C
$$

example: rewrite the equation $y=\frac{3}{7} x-5$ into standard form with integral coefficients coelfs that are integers

$$
\begin{aligned}
& 7 y=\left(\frac{3}{7} x-5\right) \cdot 7 \\
& 7 y=3 x-35
\end{aligned}
$$

$$
35=3 x-7 y
$$

$$
3 x-7 y=35
$$

I will also accept $-3 x+7 y=-35$
point-slope form: $\quad y-y_{1}=m\left(x-x_{1}\right)$
example: write the equation of a line with slope - 2 which mas through the point $(1,-7)$. wite your answer in standard form.
note: if I dart tell you which form to use, then use either stendiod or slope - intercept
method \#1:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+7=-2(x-1) \\
& y+7=-2 x+2 \\
& 2 x+y=-5
\end{aligned}
$$

Slope -intercept

$$
y=-2 x-5
$$

method \#2:

$$
\begin{aligned}
y & =m x+b \\
-7 & =-2(1)+b \\
-7 & =-2+b \\
b & =-5 \\
y & =m x+b \\
y & =-2 x-5 \\
2 x+y & =-5
\end{aligned}
$$

slope: - 2

$$
\text { point: }(1,-7)
$$

example: Find the equation of a line that mos through the points $(6,0)$ and $(9,1)$. Give your answer in slope-intercept form.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{1-0}{9-6}=\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-0 & =\frac{1}{3}(x-6) \\
y & =\frac{1}{3} x-2
\end{aligned}
$$

example: Give the equation of the line that runs through the point $(-8,-2)$ and is perpendicular to the line $3 x-5 y=-7$. Give year answer in stranded form.

$$
\begin{aligned}
& 3 x-5 y=-7 \\
&-5 y=-3 x-7 \\
& y=\frac{3}{5} x+\frac{7}{5} \\
& m_{1}=\frac{3}{5} \quad \text { point }(-8,-2) \\
& m_{2}=-\frac{5}{3} \quad \\
& y=m x+b \\
&-2=-\frac{5}{3}(-8)+b \\
&-2=+\frac{40}{3}+b \\
& b=-2-\frac{40}{3}=-\frac{46}{3} \\
& y=m x+b
\end{aligned}
$$

$$
\begin{aligned}
& 3(y)=\left(-\frac{5}{3} x-\frac{46}{3}\right)^{3} \\
& 3 y=-5 x-46 \\
& 5 x+3 y=-46
\end{aligned}
$$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y+2 & =-\frac{5}{3}(x+8) \\
3(y+2) & =-5(x+8) \\
3 y+6 & =-5 x-40 \\
5 x+3 y & =-46
\end{aligned}
$$

