Section 7.1: contd
quotient cole:

$$
\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
$$

\rightarrow provided that $b \neq 0$ and that all roots are real numbers

Simplify:

$$
\begin{gathered}
\frac{\sqrt{50}}{\sqrt{2}}=\sqrt{\frac{50}{2}}=\sqrt{25}=5 \\
a=\frac{\sqrt{2 \cdot 25}}{\sqrt{2}}=\frac{5 \sqrt{2}}{\sqrt{2}}=5 \\
\sqrt[3]{\frac{-27 y^{36}}{1000}}=\frac{-3}{10} \sqrt[3]{\left(y^{12}\right)^{3}}=\frac{-3 y^{12}}{10} \\
\sqrt[4]{\frac{x^{5} y^{4}}{z^{12}}}=\sqrt[4]{\frac{x^{4} \cdot x y^{4}}{\left(z^{3}\right)^{4}}}=\frac{x y}{z^{3}} \sqrt[4]{x}
\end{gathered}
$$

domain of a radical
Ne bern abut functions

$$
\sqrt{2-x}
$$

ignore
there are values of x that make the expression under the radical negative
\rightarrow result is "no a real number"
domain - set of all x that lead to real numbers for $\sqrt{2-x}$
now to find?

$$
\begin{aligned}
2-x & \geq 0 \\
-x & \geq-2 \\
x & \leq 2
\end{aligned}
$$

domain:
set-builder notation:

$$
\{x \mid x \leq 2\}
$$

interval rotation: $(-\infty, 2]$
note: only have to worry if takin an even root
because taking odd roots of negative numbers gives you reals
examples:
find the domain of $\sqrt[4]{4 x-12}$

$$
\begin{aligned}
4 x-12 & \geq 0 \\
4 x & \geq 12 \\
x & \geq 3
\end{aligned}
$$

domain: $\{x \mid x \geqslant 3\}$

$$
[3, \infty)
$$

find the domain of $\underbrace{\sqrt[3-4 x]{5}}_{\text {all real salves of } x \text { are okay }}$
domain:

$$
\begin{aligned}
& R \\
& (-\infty, \infty)
\end{aligned}
$$

$\xrightarrow[\text { insist! }]{ }$ if $y \omega\{x \mid x \in R\}$

