Math 173 - Section 4.5: Sketching Rational Functions

1. Consider the following rational function: $f(x)=\frac{4}{x-2}$.

What is the y-intercept? set $x=0$

$y=f(0)=\frac{4}{-2}=-2$
What are the x-intercepts?

$$
\begin{aligned}
& \text { set numerater to zero } \\
& \text { and solve fer } x
\end{aligned}
$$

none

$$
4=0
$$

o, where?

$$
\text { set denaminater to } 2 a r 0 \rightarrow
$$

$$
\begin{aligned}
& x-2=0 \\
& \text { so } x=2
\end{aligned}
$$

yes,

$$
\text { at } x=2
$$

Are there any horizontal asymptotes? If so, where?

$$
\begin{array}{r}
\text { degree of rum }<\text { degree of denom } \\
\text { yes at } y=0
\end{array}
$$

Are there any oblique asymptotes? If so, where?
no

Sketch the graph as accurately as possible.

$f(x)=\frac{4}{x-2}$
2. Consider the following rational function: $f(x)=\frac{3 x-1}{x}$.

What is the y-intercept? set $x=0$ \qquad

$$
y=f(0)=\frac{-1}{0}=\text { undefined }
$$

What are the x -intercepts? set $\cap \mathrm{m}=0$

$$
\begin{aligned}
& 3 x-1=0 \\
& x=1 / 3
\end{aligned}
$$

Are there any vertical asymptotes? If so, where? Set denom $=0$

$$
x=0 \quad \text { yes, at } x=0
$$

Are there any horizontal asymptotes? If so, where?

$$
\text { yes, at } y=3
$$

Are there any oblique asymptotes? If so, where?

Sketch the graph as accurately as possible.

x	y
-3	$3^{1 / 3}$
-1	4
4	$11 / 4=23 / 4$

3. Consider the following rational function: $\quad f(x)=\frac{x}{x^{2}-x-2}=\frac{x}{(x-2)(x+1)}$

What is the y-intercept? Set $x=0$ \qquad

$$
y=f(0): \frac{0}{-2}=0
$$

What are the x-intercepts? \qquad

$$
\text { set } \begin{aligned}
\text { mum } & =0 \\
x & =0
\end{aligned}
$$

Are there any vertical asymptotes? If so, where? set denom $=0$

$$
(x-2)(x+1)=0
$$

$$
\text { yes, at } x=2 \text { and } x=-1
$$

Are there any horizontal asymptotes? If so, where?

$$
\text { degree of nun < degree denom } \text { yes, at } y=0
$$

Are there any oblique asymptotes? If so, where?
no

Sketch the graph as accurately as possible.

x	y
-3	-0.3
-2	-0.5
$-1 / 2$	0.4
1	-0.5
3	0.75

4. Consider the following rational function: $f(x)=\frac{2\left(x^{2}-9\right)}{x^{2}-4}$.

What is the y-intercept?

$$
y=f(0)=\frac{2(-9)}{-4}=9 / 2
$$

What are the x-intercepts?

$$
x= \pm 3
$$

Are there any vertical asymptotes? If so, where?

$$
x= \pm \partial
$$

$$
\text { yes, at } x= \pm 2
$$

Are there any horizontal asymptotes? If so, where?

$$
\text { yes, at } y=2
$$

Are there any oblique asymptotes? If so, where?
no

Sketch the graph as accurately as possible.

5. Consider the following rational function: $f(x)=\frac{x^{2}-x}{x+1}$.

What is the y-intercept?

$$
\text { set } x=0
$$

$$
y=0
$$

What are the x -intercepts?

$$
x^{2}-x=0 \quad \Rightarrow \quad x(x-1)=0 \quad \Rightarrow \quad x=0,1
$$

Are there any vertical asymptotes? If so, where? set denam=0

$$
x+1=0 \quad \Rightarrow \quad x=-1
$$

Are there any horizontal asymptotes? If so, where?
no

Are there any oblique asymptotes? If so, where?
yes
(degree mum >degree of denom)
Sketch the graph as accurately as possible.

x	y
-2	-6
-3	-6

$$
x+1 \sqrt{\frac{x-2}{x^{2}-x+0}} \begin{aligned}
& x^{2}+x
\end{aligned} \quad y=x-2
$$

$$
-2 x+0
$$

$$
-\frac{2 x-2}{2}
$$

6. Consider the following rational function: $f(x)=\frac{x^{2}-x-2}{x-1}$.

What is the y-intercept? set $x=0$ \qquad

$$
y=\frac{-2}{-1}=2
$$

What are the x -intercepts? set nim: 0

$$
\begin{aligned}
& x^{2}-x-2=0 \\
& (x+1)(x-2)=0 \quad x=2,-1
\end{aligned}
$$

Are there any vertical asymptotes? If so, where? set denom $=0$

$$
x-1=0 \quad x=1
$$

Are there any horizontal asymptotes? If so, where?
no

Are there any oblique asymptotes? If so, where?

$$
\text { yes } \quad x-1 \begin{aligned}
& \frac{x}{x^{2}-x-2} \\
& \frac{x^{2}-x}{-2}
\end{aligned}
$$

$$
\text { yes, at } y=x
$$

Sketch the graph as accurately as possible.

7. Consider the following rational function: $f(x)=\frac{x}{x^{2}+1}$.

What is the y-intercept? \qquad

$$
y=0
$$

What are the x-intercepts?

$$
\text { set } n \text { um }=0
$$

\qquad

$$
x=0
$$

Are there any vertical asymptotes? If so, where? set denam=0

$$
x^{2}+1=0
$$

no

Are there any horizontal asymptotes? If so, where?

$$
\text { yes, at } y=0
$$

Are there any oblique asymptotes? If so, where?

no

Sketch the graph as accurately as possible.

x	y
1	$1 / 2=0.5$
2	$2 / 5=0.4$
3	$3 / 10=0.3$
4	$4 / 17 \approx 0.235$
-1	-0.5
-2	-0.4
-3	-0.3

Are there any vertical asymptotes? If so, where?
for this special case, no vertical asymptotes bA there is a hole in the domain
Are there any horizontal asymptotes? If so, where? $\quad x=-3$

Are there any oblique asymptotes? If so, where?

Sketch the graph as accurately as possible.

