Section 3.3: Analyzing Graphs of Quadratic Functions

Assign 2 due on:
Tues, fer 3

Quiz 2 an: Thurs, feb 5
consider the parabola in the form:

$$
f(x)=a(x-h)^{2}+k
$$

it is just the graph of $y=x^{2}$ but
(1) shifted up by k unis
(2) shifted right by h units
(3) stretched by a factor of $|a|$ (if $|a|<1$, then parabola is shallower, and if |al >1, stepper)
(4) if $a<0$ (a is negative), then also opens downwards (flipped over the x-axis)
example: sketch $f(x)=2(x+1)^{2}-3$

$$
f(x)=a(x-h)^{2}+k
$$

vertex:

max ${ }^{\circ}$?
min
vertex:

$$
(h, k)=(-1,-3)
$$

flipped over x ? no

$$
\begin{aligned}
& f(0)=-1 \\
& f(1)=5
\end{aligned}
$$

domain: R
range: $[-3, \infty)$

$$
\text { or }\{010 \geq-3\}
$$

note an set-builder notation
$Q \equiv$ set of rational numbers
$\equiv\left\{\left.\frac{a}{b} \right\rvert\, a\right.$ and b are integers and $\left.b \neq 0\right\}$

Straight lines: $\quad\{(x, y) \mid x+3 y=7\}$
example: sketch $\quad f(x)=-1 / 2(x-2)^{2}-1$ and state the vertex, the axis of symmetry, whether the vertex is a maximum or minimum, and also give the range.

vertex:

$$
(h, k)=(2,-1)
$$

axis of symmetry:

$$
x=2
$$

vertex: max
range: $\{y \mid y \leq-1\}$

$$
(-\infty,-1]
$$

find the coordinates of the vertex for the prabola:

$$
\begin{aligned}
f(x) & =x^{2}+6 x+2 \\
& =\left(x^{2}+6 x+9\right)+2-9
\end{aligned}
$$

idvideby two and square to get what goes in the fist blank

$$
=(x+3)^{2}-7
$$

vertex: $\quad(-3,-7)$

$$
\begin{aligned}
f(x) & =x^{2}-7 x-11 \\
& =\left(x^{2}-7 x+\frac{\frac{49}{4}}{}\right)-11-\frac{49}{4}
\end{aligned}
$$

$$
\begin{aligned}
& a r(-7 / 2)^{2} \\
& =\left(x-\frac{7}{2}\right)^{2}-\frac{44}{4}-\frac{49}{4} \\
& =(x-7 / 2)^{2}-\frac{93}{4} \\
& =a(x-h)^{2}+k
\end{aligned}
$$

vertex: $\left(7 / 2,-\frac{93}{4}\right)$

$$
\begin{aligned}
f(x) & =-3 x^{2}+12 x-13 \\
& =-3\left(x^{2}-4 x+4\right)-13-(-3)(4) \\
& =-3(x-2)^{2}-13+12 \\
& =-3(x-2)^{2}-1 \\
& =a(x-h)^{2}+k
\end{aligned}
$$

vertex: $\quad(2,-1)$
nifty trick:
the x-cord of the vertex is at

$$
x=\frac{-b}{2 a}
$$

then plug that x-value in to $f(x)$ to get the y-coord

A fourth-grade class wants to fence in a garden, using the wall of the school as one of the sides of the garden. There is 14 m of fencing available. what is the maximum area the students can fence in?

$$
\begin{aligned}
\rho & =l+2 \omega \\
14 & =l+2 \omega \\
l & =14-2 \omega
\end{aligned}
$$

$A=\ell \omega$
$A=(14-2 \omega) \omega$
$A=14 \omega-2 \omega^{\circ}$

$$
\lambda
$$

this is a parabole

