Section 4.1 and 4.2: contd
Tuesday, January 27, 2015
11:29 AM
example: for the follaving polynomial, find the zeros and their multiplicities, then sketch the graph.

$$
\begin{aligned}
P(x) & =-x^{3}+2 x^{2}+4 x-8 \\
& =-\left(x^{3}-2 x^{2}-4 x+8\right)^{R}{ }_{y-i n t} \\
& =-\left[x^{2}(x-2)-4(x-2)\right]^{2} \\
& =-\left[(x-2)\left(x^{2}-4\right)\right] \\
& =-(x-2)(x+2)(x-2) \\
& =-(x-2)^{2}(x+2)
\end{aligned}
$$

$$
\text { zeros: } \begin{array}{ccc}
x= & 2, & -2 \\
& \uparrow & \uparrow \\
\text { multi } & \text { must } \\
2 & 1
\end{array}
$$

end behaviour:

$$
\begin{aligned}
& \text { 个 } \left.\quad \begin{array}{l}
I C \text { is res, } \\
\text { degree is } \\
\text { od }
\end{array}\right)
\end{aligned}
$$

y-int $\quad P(0)=-8$
So $(0,-8)$ is
note: if yalu reed a couple of extra points, just plus in same values of x into $P^{\prime}(x)$
\rightarrow for this graph, $x=-1,1$ and maybe $3,-3$ good choices
example: Find the zeros and their associated multiplicities for:
a)

$$
\begin{aligned}
& P(x)=x^{4}-9 x^{2}+20 \quad a c=20 \\
& =x^{4}-4 x^{2}-5 x^{2}+20 \\
& =x^{2}\left(x^{2}-4\right)-5\left(x^{2}-4\right) \\
& =\left(x^{2}-5\right)\left(x^{2}-4\right) \\
& =(x-\sqrt{5})(x+\sqrt{5})(x-2)(x+2)
\end{aligned}
$$

note: quick sketch

b)

$$
\begin{aligned}
Q(x) & =x^{2}+9 \\
& =x^{2}-(-9)
\end{aligned}
$$

$$
=(x-3 i)(x+3 i)
$$

$x=3 i,-3 i$ each with mull 1
note:

note: $\quad Q(x)=x^{2}+9$

$$
\begin{aligned}
& 0=x^{2}+9 \\
& x^{2}=-9 \\
& \begin{aligned}
x & = \pm \sqrt{-9}
\end{aligned}= \pm \sqrt{9} \sqrt{-1} \\
& \\
& \\
& = \pm 3 i
\end{aligned}
$$

Intermediate Value Theorem

- for any polynomial $P(x)$ with real coefficients suppose that fo $a \neq b, \quad P(a)$ and $P(b)$ have opposite signs
\rightarrow then $P(x)$ must have a real zero between $a \not b$

