Section 5.4: contd:

Wednesday, February 11, 2015 12:35 PM

BAD MATH:

example:

(1)
$$\log (x+2) + \log (x-2) - S \log x$$

$$\log (x+2)(x-2) - \log x^{S}$$

$$\log \left(\frac{x+2}{x^s}\right)$$
 or $\log \frac{x^2-4}{x^s}$

In 2

example: given that $\log_a x = 2$ and $\log_a y = 3$, evaluable

(2)
$$\log_a\left(\frac{x^2}{y^3}\right) = 2\log_a x - 3\log_a y = 4 - 9 = -5$$

3
$$\log_a \left(\frac{\sqrt{x}}{a} \right) = \frac{1}{2} \log_a x - \log_a a = 1 - 1 = 0$$

$$\frac{\log_a x}{\log_a y} = \frac{\lambda}{3}$$

note: log (xty) cannot be

further roles:

$$\log_{A} a^{x} = x$$
 and $a^{\log_{A} x} = x$

U

 $\log_{A} a^{x} = x$ and $a^{\log_{A} x} = x$

and $\log_{A} a = 1$

and $\log_{A} a = 1$

examples: simplify:

$$\log_{x} x^{4} = 4$$
 $\log_{x} x^{4} = 4$
 $\log_{x} 3a = \frac{1}{3}$
 $17^{\log_{17} y} = y$
 $(\log_{17} y) = x$
 $\log_{17} y = \log_{17} x$
 $y = x$

trickier:

$$8^{\log_8 3} = 3$$

$$8^{\log_3 3} = 8^{\log_8 3^2} = 3^2 = 9$$

$$8^{\log_3 3} = (3^3)^{\log_3 3} = 3^{\log_2 3} = 3^{\log_2 3} = 3^3 = 3^7 = 27$$

$$8^{\log_8 3} + \log_8 3 = 8^{\log_8 3} = 6$$

$$9^{\log_8 3} + \log_8 3 = 3 = 3 = 6$$