Section 11.7: cont's
Thursday, March 19, 2015
11:30 AM
(m+2)⁵
= 1 m⁵ + 5 m⁴(2) + 10 m³(2)² + 10 m²(2)³
+ 5 m(2)⁴ + 1 + 2⁵
= m⁵ + 10 m⁴ + 40 m³ + 80 m³ + 80 m + 32
(m-2)⁵ = m⁵ - 10 m⁴ + 40 m³ - 80 m² + 80 m - 32
= if y^N have a difference instead
of < sim, just alternate signs
(
$$\partial x - 3$$
)⁵ = 1 (∂x)³ - 3 (∂x)⁶(3) + 3 (∂x)(5)² - 1 + (s)
= 8x³ - 36x² + 54x - 07
(1 + i)² = (1)² + 7 1⁶i + 21 1⁵i² + 35 1⁷i² + 35 1⁵i⁴ + 21 1²i⁵
+ 7 1i⁶ + 1 + i⁷
= 1 + 7i + 21 (-1) + 35(-i) + 55(i) + 21 (i)
+ 7(-1) + (-i)
= 1 + 7i - 21 - 35i + 35 + 21i - 7 - i

 $i^{s}=c^{4}i^{s}=8-8i$

ndle:
$$(1+i)^{7} = (Ja e^{i\pi/4})^{7}$$

= $(Ja)^{7} e^{i\pi/4}$
= $(Ja)^{7} e^{i\pi/4}$
= $8Ja e^{i\pi/4}$
= $8Ja e^{i\pi/4}$
= $8Ja e^{i\pi/4}$

$$\left(\int \overline{2} - \sqrt{3} \right)^{4} = \left| \cdot \sqrt{2}^{4} - 4 \int \overline{2}^{3} \int \overline{3} + 6 \int \overline{2}^{3} \int \overline{3}^{4} \right|$$

$$= 4 - 4 \cdot 2 \int \overline{2} \int \overline{3} + 1 \cdot \sqrt{3}^{4}$$

$$= 4 - 4 \cdot 2 \int \overline{2} \int \overline{3} + 6 \cdot 2 \cdot 3 - 4 \int \overline{2} \overline{3} \int \overline{3}$$

$$= 4 - 8 \int \overline{6} + 36 - 12 \int \overline{6} + 9$$

$$= 49 - 20 \int \overline{6}$$

$$disressions: \qquad \qquad ||_{0}^{0} = |$$

$$||_{1}^{0} = ||_{1}^{0}$$

$$||_{1}^{0} = ||_{1}^{0}$$

$$||_{1}^{0} = ||_{1}^{0}$$

$$||_{1}^{0} = ||_{1}^{0} ||_{1}^{0}$$

$$||_{1}^{0} = (|0+1|)^{0}$$

Section 1 Lectures Page 2

(a) is there another way to get the coefficients?

$$(x+y)^8 = x^8 + _ x^7y + _ x^6y^2 + ...$$
The coeff = $\frac{8!}{6!2!}$
nCr $\frac{8!}{6!2!} = 8^{-6}$