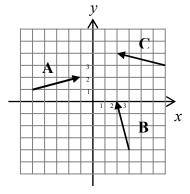
## Section V.3: Dot Product

## **Exercise Solutions**

Find the dot product **A**•**B** of the following vectors.

1. A has components  $A_x = -3$ ,  $A_y = 6$ ; **B** has components  $B_x = -5$ ,  $B_y = -6$ .  $A \cdot B = (-3)(-5) + 6(-6) = 15 - 36 = -21$ 2. A has components  $A_x = 17$ ,  $A_y = 34$ ; **B** has components  $B_x = 16$ ,  $B_y = -8$ .  $A \cdot B = 17 \cdot 16 + 34 \cdot (-8) = 0$ 3. A = 3i, B = j $\mathbf{A} \cdot \mathbf{B} = 0$ 4. A = i, B = 2i $\mathbf{A} \cdot \mathbf{B} = 2$ 5. A = 3i + j, B = 7i - 2j $\mathbf{A} \cdot \mathbf{B} = 19$ 6. A = 4i - 3j, B = i $\mathbf{A} \cdot \mathbf{B} = 4$ 7. A = -3i + 2j, B = -8j $\mathbf{A} \cdot \mathbf{B} = -16$ 8. A = i + j, B = 2i - 2j $\mathbf{A} \cdot \mathbf{B} = 0$ 9. A = 3i + j - 2k, B = 2i + 3k $\mathbf{A} \cdot \mathbf{B} = 0$ 10. A = 12i - 9j - 10k, B = 3i + j - 4k  $A \cdot B = 67$  $\mathbf{A} \cdot \mathbf{B} = 12 \cos (210^{\circ} - 45^{\circ}) = -11.6$ 11. A = 3 units at 45°, B = 4 units at 210° 12. A = 4.5 units at  $-15^{\circ}$ , B = 10 units at  $345^{\circ}$  $\mathbf{A} \cdot \mathbf{B} = 45$  $A = i - \sqrt{3} i$ ;  $A \cdot B = -3 + 3 \sqrt{3}$ 13. A = 2 units at -60°, B = -3i - 3j14. A = 7i, B = 4 units at 150  $B = -2\sqrt{3}i + 2j$   $A \cdot B = -14\sqrt{3}$ or **A·B=**28cos 150 ° = $-14\sqrt{3}$ 

Calculate the magnitude of the following vectors using the dot product.


 15. A has components  $A_x = -3$ ,  $A_y = 6$   $A = 3\sqrt{5}$  

 16. B has components  $B_x = 16$ ,  $B_y = -8$ .
  $B = 8\sqrt{5}$  

 17. A = 7i - 24j A = 25 

| 18. <b>D</b> = 5 <b>i</b> + 8 <b>j</b>                    |                  | $D = \sqrt{89}$ |
|-----------------------------------------------------------|------------------|-----------------|
| 19. $F = -8i - 12j$                                       | $F = 4\sqrt{13}$ |                 |
| 20. $W = 15i - 8j$                                        | W=17             |                 |
| $21. \mathbf{N} = 3\mathbf{i} + \mathbf{j} - 2\mathbf{k}$ | $N = \sqrt{14}$  |                 |
| 22. $A = 12i - 9j - 10k$                                  | $A = 5\sqrt{13}$ |                 |

23. Using the vectors in the diagram below, calculate A·B, A·C, and B·C.



| A = 4i + j                        | <b>B</b> = - <b>i</b> +4 <b>j</b> | C = -4i+j         |                                   |
|-----------------------------------|-----------------------------------|-------------------|-----------------------------------|
| $\mathbf{A} \cdot \mathbf{B} = 0$ |                                   | $A \cdot C = -15$ | $\mathbf{B} \cdot \mathbf{C} = 8$ |

Are the following pairs of vectors perpendicular? Use the dot product to determine your answer.

24. A has components  $A_x = 4$ ,  $A_y = 7$ ; **B** has components  $B_x = -7$ ,  $B_y = -4$ . No

| $25. \mathbf{A} = 3\mathbf{i} + \mathbf{j}, \mathbf{B} = 7\mathbf{i} - 2\mathbf{j}$ | No  |
|-------------------------------------------------------------------------------------|-----|
| 26. $A = 5i + 3j$ , $B = 5i - 3j$                                                   | No  |
| 27. $A = 5i + 3j$ , $B = 3i - 5j$                                                   | Yes |
| 28. $A = 3i + j - 2k$ , $B = 7i - 2j + k$                                           | No  |
| 29. $A = 5i - 3j + 4k$ , $B = -2i - 2j + k$                                         | Yes |

30. Using your answer for # 23, are any of these pairs of vectors perpendicular? A and B

Find the angle between each pair of vectors.

31. 
$$\mathbf{A} = 3\mathbf{i} + \mathbf{j}, \mathbf{B} = \mathbf{i} - 2\mathbf{j}$$
  $\mathbf{AB} = \mathbf{AB} \cos \theta \therefore \qquad \cos \theta = \frac{A_x B_x + A_y B_y}{AB}$ 

$$\cos\theta = \frac{1}{5\sqrt{2}}$$
,  $\theta = \cos^{-1}(\frac{1}{5\sqrt{2}}) = 81.9^{\circ}$ 

32. 
$$\mathbf{A} = 3\mathbf{i}, \mathbf{B} = 7\mathbf{i} - 6\mathbf{j}$$
  
 $\theta = \cos^{-1}(\frac{7}{\sqrt{85}}) = 40.6^{\circ}$   
33.  $\mathbf{A} = \mathbf{i} + \mathbf{j} + \mathbf{k}, \mathbf{B} = 2\mathbf{i} - \mathbf{j} - 3\mathbf{k}$   
 $\theta = \cos^{-1}\frac{-2}{\sqrt{42}} = 108^{\circ}$   
34.  $\mathbf{A} = \mathbf{i} + \mathbf{k}, \mathbf{B} = \mathbf{j} - \mathbf{k}$   
 $\theta = \cos^{-1}(\frac{-1}{2}) = 120^{\circ}$   
35.  $\mathbf{A} = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}, \mathbf{B} = -6\mathbf{i} - 3\mathbf{j} + 9\mathbf{k}$   
 $\theta = \cos^{-1}\frac{-42}{42} = 180^{\circ}$