Section V.3: Dot Product

Exercises

Find the dot product $\mathbf{A} \cdot \mathbf{B}$ of the following vectors.

1. \mathbf{A} has components $\mathrm{A}_{x}=-3, \mathrm{~A}_{y}=6 ; \mathrm{B}$ has components $\mathrm{B}_{x}=-5, \mathrm{~B}_{y}=-6$.
2. \mathbf{A} has components $\mathrm{A}_{x}=17, \mathrm{~A}_{y}=34 ; \mathbf{B}$ has components $\mathrm{B}_{x}=16, \mathrm{~B}_{y}=-8$.
3. $\mathbf{A}=3 \mathbf{i}, \mathbf{B}=\mathbf{j}$
4. $\mathbf{A}=\mathbf{i}, \mathbf{B}=2 \mathbf{i}$
5. $\mathbf{A}=3 \mathbf{i}+\mathbf{j}, \mathbf{B}=7 \mathbf{i}-2 \mathbf{j}$
6. $\mathbf{A}=4 \mathbf{i}-3 \mathbf{j}, \mathbf{B}=\mathbf{i}$
7. $\mathbf{A}=-3 \mathbf{i}+2 \mathbf{j}, \mathbf{B}=-8 \mathbf{j}$
8. $\mathbf{A}=\mathbf{i}+\mathbf{j}, \mathbf{B}=2 \mathbf{i}-2 \mathbf{j}$
9. $\mathbf{A}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}, \mathbf{B}=2 \mathbf{i}+3 \mathbf{k}$
10. $\mathbf{A}=12 \mathbf{i}-9 \mathbf{j}-10 \mathbf{k}, \mathbf{B}=3 \mathbf{i}+\mathbf{j}-4 \mathbf{k}$
11. $\mathbf{A}=3$ units at $45^{\circ}, \mathbf{B}=4$ units at 210°
12. $\mathbf{A}=4.5$ units at $-15^{\circ}, \mathbf{B}=10$ units at 345°
13. $\mathbf{A}=2$ units at $-60^{\circ}, \mathbf{B}=-3 \mathbf{i}-3 \mathbf{j}$
14. $\mathbf{A}=7 \mathbf{i}, \mathbf{B}=4$ units at 150°

Calculate the magnitude of the following vectors using the dot product.
15. \mathbf{A} has components $\mathrm{A}_{x}=-3, \mathrm{~A}_{y}=6$
16. \mathbf{B} has components $\mathrm{B}_{x}=16, \mathrm{~B}_{y}=-8$.
17. $\mathbf{A}=7 \mathbf{i}-24 \mathbf{j}$
18. $\mathbf{D}=5 \mathbf{i}+8 \mathbf{j}$
19. $\mathbf{F}=-8 \mathbf{i}-12 \mathbf{j}$
20. $\mathbf{W}=15 \mathbf{i}-8 \mathbf{j}$
21. $\mathbf{N}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$
22. $\mathbf{A}=12 \mathbf{i}-9 \mathbf{j}-10 \mathbf{k}$
23. Using the vectors in the diagram below, calculate $\mathbf{A} \cdot \mathbf{B}, \mathbf{A} \cdot \mathbf{C}$, and $\mathbf{B} \cdot \mathbf{C}$.

Are the following pairs of vectors perpendicular? Use the dot product to determine your answer.
24. \mathbf{A} has components $\mathrm{A}_{x}=4, \mathrm{~A}_{y}=7 ; \mathbf{B}$ has components $\mathrm{B}_{x}=-7, \mathrm{~B}_{y}=-4$.
25. $\mathbf{A}=3 \mathbf{i}+\mathbf{j}, \mathbf{B}=7 \mathbf{i}-2 \mathbf{j}$
26. $\mathbf{A}=5 \mathbf{i}+3 \mathbf{j}, \mathbf{B}=5 \mathbf{i}-3 \mathbf{j}$
27. $\mathbf{A}=5 \mathbf{i}+3 \mathbf{j}, \mathbf{B}=3 \mathbf{i}-5 \mathbf{j}$
28. $\mathbf{A}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}, \mathbf{B}=7 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$
29. $\mathbf{A}=5 \mathbf{i}-3 \mathbf{j}+4 \mathbf{k}, \mathbf{B}=-2 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$
30. Using your answer for \#23, are any of these pairs of vectors perpendicular?

Find the angle between each pair of vectors.
31. $\mathbf{A}=3 \mathbf{i}+\mathbf{j}, \mathbf{B}=\mathbf{i}-2 \mathbf{j}$
32. $\mathbf{A}=3 \mathbf{i}, \mathbf{B}=7 \mathbf{i}-6 \mathbf{j}$
33. $\mathbf{A}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \mathbf{B}=2 \mathbf{i}-\mathbf{j}-3 \mathbf{k}$
34. $\mathbf{A}=\mathbf{i}+\mathbf{k}, \mathbf{B}=\mathbf{j}-\mathbf{k}$
35. $\mathbf{A}=2 \mathbf{i}+\mathbf{j}-3 \mathbf{k}, \mathbf{B}=-6 \mathbf{i}-3 \mathbf{j}+9 \mathbf{k}$

