Section 26.1: Applications of the Indefinite Integral Thursday, January 10, 2013 11:02 AM

kinematics:

$$a = \frac{dv}{dt} \qquad a = acceleration $v = velocity$
 $t = time$$$

$$V = \int dV dt$$

 $V = \int a dt$

example:

V = Sadt where a is a constant V = at + C

but at
$$f=0$$
, $V=V_0$
 $V_0 = a\cdot 0 + C$ $\therefore C=V_0$

displacement
$$S = \int v dt$$

= $\int (at + v_0) dt$
= $\int at^2 + v_0t + C_1$

at
$$t=0$$
, $s=0$
 $0 = 0 + 0 + C_1$, so $C_1 = 0$
 $S = \frac{1}{2}at^2 + v_0t$