Section 30.5: Taylor series
Tweeden Wards 12.203
The clavity series: any accurate for vertices of x close
to Zero
- what if x wint close to zero?
-7 expand abalt some other value
instead!
- power series expansion, but instead of x;
all at our terms are in
$$(x-a)$$

Taylor series:
 $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{a!}(x-a)^{2} + ...$
Note: this one's on the final evan formula
sheet
to get Macharin, set a= 0
example: Using the definition find the first three
non-zero terms of the Taylor series of
 $f(x) = e^{x-1}$ abat $q:d$
 $f(a) = e^{x-1}$ f'(a) = e
 $f'(a) = e^{x-1}$ f'(a) = e
 $f'(x) = e^{x-1}$ f'(a) = e

$$f(x) = f(a) + \frac{f'(a)}{l!} (x-a) + \frac{f'(a)}{a!} (x-a)^{2} + \dots$$

$$= \ell + \ell(x-2) + \frac{\ell}{2}(x-2)^{2} + \dots$$

• •

example: Lxpand $\sqrt[4]{x}$ in powers of x - 16. Give the first three terms Tay lar entres $f(x) = x^{1/4}$ $f'(x) = \frac{1}{4}x^{-3/4}$ f'(16) = 2 $f'(x) = \frac{1}{4}x^{-3/4}$ $f'(16) = -3 \cdot 2^{-7} = -3$ 16 $f'(x) = \frac{1}{4}x^{-7/4}$ $f''(16) = -3 \cdot 2^{-7} = -3$ 16 $f'(x) = \frac{1}{4}x^{-7/4}$ $f''(x) = \frac{1}{4}x^{-7/4}$ f

$$f(x) \approx 2 + \frac{1}{32} (x - 16) - \frac{3}{4096} (x - 16)^{2}$$

$$4/x \approx 2 + \frac{1}{32}(x-16) - \frac{3}{4096}(x-16)^{2}$$

≈ 2.03052 ≈ 2.0305

Calaleter says 2.03054

the first three non-zero tems of a example: by using Taylor series, enclucte Cos 28°. Round your answer to 4 decimal places.

$\cos 28^{\circ} = \cos (30^{\circ} - 2^{\circ})$
= $\cos\left(\frac{\pi}{6} - \frac{\pi}{90}\right) \in \exp(\operatorname{and}_{12} \operatorname{aback})$ $\frac{\pi}{16}$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$f(x) \approx f(a) + f'(a) (x - a) + \frac{f'(a)}{a!} (x - a)^{2}$
$\cos x \approx \frac{\sqrt{3}}{3} - \frac{1}{3} (x - \frac{7}{6}) - \frac{\sqrt{3}}{3} (x - \frac{7}{6})^2$
$\cos 28^{\circ} \approx \frac{13}{2} - \frac{1}{2} \left(-\frac{\pi}{40} \right) - \frac{13}{4} \left(-\frac{\pi}{40} \right)^{2}$
~ 0.882951 ~ 0.8830 Calalleter Velue:

0.882948