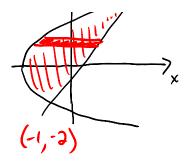
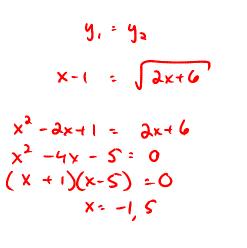
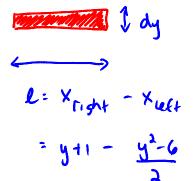
ferilu:

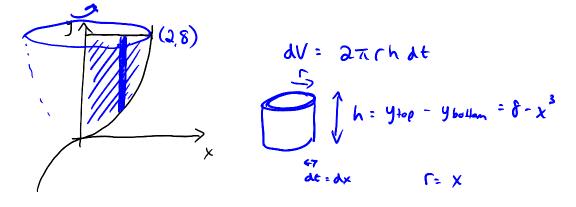

Wednesday, March 13, 2013 10:32 AM


Find the displacement x(t) of an object if its acceleration 13 given by $a = 1 \partial t$

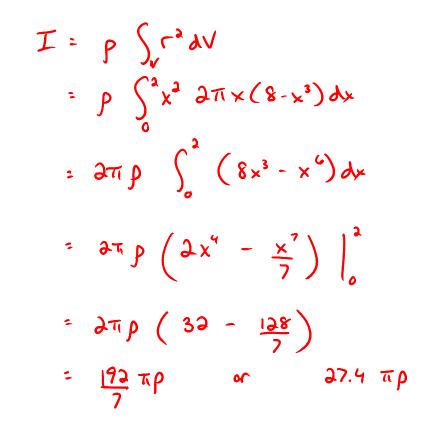

where t is in seconds and a is in m/s^{a} . The initial velocity is Sm/s. T = Sadt = Sidt dt $= Gt^{a} + C$

at t=0, v = sm/s sm/s = 6.0 + C so C = 5 $x = \int (6t^2 + s) at$ $= 2t^3 + 5t + C_1$ at t=0, x=0 $so C_1 = 0$ $x = 2t^3 + 5t$

Find the area between the line
$$y=x-1$$
 and the
perabolic $y^2 = \partial x + (a, y)$
 $y = \int f(s, 4)$ two curve intersect at:


$$y = x - 1$$
 $x = y + 1$ (r.347)
 $y^{2} = 2x - 6$
 $x = y^{2} - 6$ (ufr)

$$dA = Rdy = \left(y + 1 - \frac{y^2 - 6}{2}\right)dy$$


$$A = \int_{A}^{4} dA$$

= $\int_{-3}^{4} \left(y + 1 - \left(\frac{y^{2} - 6}{2} \right) \right) dy$
= $\int_{-3}^{4} \left(-\frac{y^{2}}{4} + y + 4 \right) dy$
= $\left(-\frac{y^{3}}{6} + \frac{y^{2}}{4} + 4y \right) \Big|_{-3}^{4}$
= $-\frac{64}{6} + 8 + 16 - \left(\frac{8}{6} + 2 - 8 \right)$

Find the moment of inertia for the following

Find the moment of inertia for the following solid of revolution: consider the region bounded by $y = x^3$, x=0, and y=8 rotated about the y-axis. You may leave your answer in terms of the density p.

$$dV = \partial \pi \times (8 - x^3) dx$$

$$dI = \frac{1}{2}mr^2$$
, not mr^2