Section 5.2: contd
Tuesday, May 21, 2013
11:30 AM

x	frequency	theoretical $\rho(x)$
0	1	0.017
1	11	0.086
2	HI 1	0.195
3	HA HI III	0.260
4	HF	0.227
5	11	0.136
6	1	0.056
7	11	0.016
8		0.003
9		0.00033
10		0.0000169

hov do you calculate these? Gam last time:

$$
\begin{aligned}
& p(x-k)={ }_{n} C_{k} p^{k} q^{n-k} \\
& p(x=k)={ }_{10} C_{k}(1 / 3)^{k}\left(\frac{2}{3}\right)^{10-k}
\end{aligned}
$$

example:
On stor Trek Voyager, the odds of crashing the shuttle on any away mission apper to be 75 o. If these crashes are independent, what are the odds of having
a) exactly for crashes in five shuttle missions
b) at least for crashes in five shuttle missions
a) $\quad P(x=k)={ }_{n} C_{k} \quad p^{k} q^{n-k}$

$$
\begin{aligned}
P(x=4) & ={ }_{5} C_{4}(0.75)^{4}(0.25)^{1} \\
& =0.395508 \\
& =0.40 \quad \text { or } 408
\end{aligned}
$$

b)

$$
\begin{aligned}
P(x \geq 4)= & P(x=4)+P(x=5) \\
& \uparrow(x=5)={ }_{5} c_{5}(0.75)^{5}(0.25)^{\circ} \\
= & 0.3955+0.2373 \\
= & 0.63=638
\end{aligned}
$$

it turns alt that for binomial distributions:

$$
\begin{array}{ll}
\rho=n p & (\text { mean }) \\
\sigma^{2}=n p q & (\text { variance }) \\
\sigma=\sqrt{n p q} & (\text { std } \operatorname{dev})
\end{array}
$$

so, for the shuttle scenario, find the average number of shuttle crashes in fire missions. Also, calculate the standard deviation

$$
\begin{aligned}
N & =n p \\
& =5(0.75) \\
& =3.75 \\
\sigma & =\sqrt{n p q} \\
& =\sqrt{5(0.75)(0.25)}
\end{aligned}
$$

$$
\begin{aligned}
& =0.9682 \\
& =0.97
\end{aligned}
$$

Ch $4 \& 5$ Page 3

