Section 5.3: contd
Wednesday, May 22, 2013
11:52 AM
then $x=$ number of events occurring in a period of time or space
$\mu=$ average number of such events expected to occur
and

$$
P(x=k)=\frac{\mu^{k} e^{-\mu}}{k!} \quad \text { where } k=0,1,2, \ldots
$$

note: k has no maximum value \rightarrow unbounded
also
mean: N
std dew: $\quad \sigma=\sqrt{\mu}$
example:

For a particular cement mix, the average number of cracks per concrete specimen is 2.5. Assume that this number of cracks oblys a Poisson distribution.
a) find the mean and standard deviation for the number of cracks per specimen.
b) What 3 the probability of having at least one crack in a randomly chosen specimen?
a) $\quad N=2.5$
$\cdots \quad \sigma=\sqrt{\mu}=\sqrt{2.5} \approx 1.58 \approx 1.6$
b)

$$
\begin{aligned}
P(x \geqslant 1): 1-P(x=0) & \uparrow \\
P(x=k) & =\frac{\mu^{k} e^{-N}}{k!} \\
P(x=0) & =\frac{(2.5)^{0} e^{-2.5}}{0!} \\
& =0.082085
\end{aligned}
$$

$$
\begin{aligned}
P(x \geq 1) & =1-0.082085 \\
& =0.917915 \\
& =920
\end{aligned}
$$

note: $\quad N \pm 20=$ the interval from -0.7 to 5.7 and if ya sum $\sum_{x=0}^{5} p(x)=0.958$

Poisson distributions look like this

- unimodal t skewed to the right
example:
In nuclear physics, the number of neutrons defected in a particular detecter over a certain time period is a poisson process. What average number of events shall you measure so that your stendord deviation
is the of the mean?

$$
\begin{aligned}
\sigma & =0.01 \mu \\
\sqrt{\mu} & =0.01 \mu \\
1 & =0.01 \frac{\mu}{\mu^{1 / 2}} \\
1 & =0.01 \mu^{1 / 2} \\
1 & =\frac{1}{100} \sqrt{\mu} \\
100 & =\sqrt{\mu} \\
10000 & =\mu
\end{aligned}
$$

Ch $4 \& 5$ Page 3

