Application of Matrix Multiplication:
 Vector Rotation

In 2D: Rotating a vector by an angle θ can be done using multiplication by the matrix

$$
R_{\theta}=\left[\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

For example, for $\theta=90^{\circ}$, the rotation matrix is:

$$
R_{90^{\circ}}=\left[\begin{array}{rr}
\cos 90^{\circ} & -\sin 90^{\circ} \\
\sin 90^{\circ} & \cos 90^{\circ}
\end{array}\right]=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

To rotate the vector $\mathbf{v}=(1,0)$ by 90° :

$$
R \mathbf{v}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Example: Rotate the vector $\mathbf{v}=(1,1)$ by (a) $90^{\circ} \quad$ (b) 45°.

$$
\begin{aligned}
& \text { a) } R_{40^{\circ}} \vec{V}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{cc}
-1 \\
1
\end{array}\right] \\
& \text { b) } R_{45^{\circ}}=\left[\begin{array}{cc}
\cos 45^{\circ} & -\sin 45^{\circ} \\
\sin 45^{\circ} & \cos 45^{\circ}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right] \\
& R_{45^{\circ}} \vec{V}=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
\sqrt{2}
\end{array}\right]
\end{aligned}
$$

In 3D: Rotating a vector by an angle θ is axis-specific. To rotate around the x-axis means that the rotation is happening counterclockwise and parallel to the $y z$-plane. The rotation matrices for rotation around each axis are:

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Example 1: Rotate the vector $\mathbf{v}=(0,1,0)$ by 90° around the x-axis.

Example 2: Rotate the vector $\mathbf{v}=(0,0,1)$ by 90° around the y-axis.

Example 3: Rotate the vector $\mathbf{v}=(1,0,0)$ by 90° around the z-axis.

