31.2 and 31.4 Mixed LEs SOLUTIONS

$$
\text { 1. } \begin{aligned}
2 \frac{d y}{d x} & =\frac{y(x+1)}{x} \\
\frac{2}{y} d y & =\frac{(x+1)}{x} d x \\
2 \int \frac{1}{y} d y & =\int\left(1+\frac{1}{x}\right) d x \\
2 \ln y & =x+\ln x+C
\end{aligned}
$$

to find the explicit solution: $2 \ln y=x+\ln x+C_{1}$

$$
\begin{aligned}
& \operatorname{lny}=\frac{1}{2} x+\frac{1}{2} \ln x+\sqrt{\frac{1}{2} C_{1}} \quad \text { let } C_{2}=\frac{1}{2} C_{1} \\
& y=e^{\frac{1}{2} x+\frac{1}{2} \ln x+C_{2}} \\
& y=e^{\frac{1}{2} x} e^{\frac{1}{2} \ln x} e^{C_{2}} \quad \text { let } C=e^{C_{2}} \\
& y=C e^{\frac{1}{2} x} e^{\ln x} \\
& y=C \sqrt{x} e^{\frac{1}{2} x}
\end{aligned}
$$

2. $y^{\prime}+y(\tan x)=-\sin x$ in linear first-order form

$$
\begin{aligned}
& e^{\int f(x) d x}=e^{\int \tan x d x}=e^{\ln (\operatorname{cec} x)}=\sec x \\
& \sec x\left(y^{\prime}+y \tan x\right)=(-\sin x) \sec x \\
& \frac{\sec x}{u}{\underset{y}{ }}_{y^{\prime}}^{y^{\prime}}+\underset{y^{\prime}}{y \tan x \sec x}=-\sin x \sec x \\
& \frac{d}{d x}\left(\frac{\sec x}{n} \cdot y\right)=-\sin x \sec x \\
& d(\sec x \cdot y)=-\sin x \sec x d x \\
& \int d(\sec x \cdot y)=\int-\sin x \sec x d x \\
& \sec x \cdot y=\int-\sin x \sec x d x \\
& y \sec x=-\int \frac{\sin x}{\cos x} d x \\
& y \sec x=-\int \tan x d x \\
& y \sec x=-\ln (\sec x)+C
\end{aligned}
$$

it's fine to skip these steps
implicit solution

$$
y=\frac{-\ln (\sec x)+c}{\sec x}=\cos x(-\ln (\sec x)+c) \quad \text { explicit solution }
$$

3.

$$
\begin{aligned}
& y^{\prime}=x^{2} y+3 x^{2} \\
& \frac{d y}{d x}=x^{2}(y+3) \\
& \frac{1}{y+3}=x^{2} d x \\
& \int \frac{1}{y+3} d y=\int x^{2} d x
\end{aligned}
$$

$\ln (y+3)=\frac{1}{3} x^{3}+C \quad$ implicit solution - fine to stop here
to find the explicit solution: $\ln (y+3)=\frac{1}{3} x^{3}+C_{1}$

$$
\begin{aligned}
& y+3=e^{\frac{3 x^{3}+C_{1}}{}} \\
& y+3=e^{\frac{13}{3} x^{3}} e^{c} \\
& y+3=C e^{\frac{1}{3} x^{3}} \\
& y=C e^{\frac{1}{3} x^{3}}-3 \quad \text { explicit } \quad C=e^{c} \\
& \text { sumption }
\end{aligned}
$$

4. $y^{\prime}=2 y+2 e^{2 x}$
$\frac{d y}{d x}-2 y=2 e^{2 x}$
$p(x) \quad Q(x)$
$e^{\int p(x) d x}=e^{\int-2 d x}=e^{-2 x}$

$$
\begin{aligned}
e^{-2 x}\left(\frac{d y}{d x}-2 y\right) & =\left(2 e^{2 x}\right) e^{-2 x} \\
\frac{d}{d x}\left(e^{-2 x} y\right) & =2 \\
\int d\left(e^{-2 x} y\right) & =\int 2 d x
\end{aligned}
$$

$$
e^{-2 x} y=2 x+C \quad \text { implicit solution }
$$

$y=\frac{2 x+C}{e^{-2 x}}=e^{2 x}(2 x+C) \quad$ explicit solution
5.

$$
\begin{aligned}
& x y y^{\prime}+\sqrt{1+y^{2}}=0 \\
& x y y^{\prime}=-\sqrt{1+y^{2}} \\
& \frac{d y}{d x}=\frac{-\sqrt{1+y^{2}}}{x y} \\
& \frac{-y}{\sqrt{1+y^{2}}} d y=\frac{1}{x} d x \\
&-\int y\left(1+y^{2}\right)^{-1 / 2} d y=\int \frac{1}{x} d x \\
& \operatorname{lep} \\
& \frac{d u}{}=1+y^{2} \\
& \frac{1}{2} d d_{u}=y d y \\
&-\frac{1}{2} \int u^{-1 / 2} d u=\ln x+C_{1} \\
&-\frac{1}{2} \cdot \frac{2}{1} u^{1 / 2}=\ln x+C_{1} \\
&\left(1+y^{2}\right)^{1 / 2}=-\ln x-C_{1} \\
&\left(1+y^{2}\right)^{1 / 2}=-\ln x+C_{1}
\end{aligned}
$$

separable
let $C=-C_{1}$
implicit solution
to find the explicit solution: $\left(\left(1+y^{2}\right)^{1 / 2}\right)^{2}=(-\ln x+C)^{2}$

$$
\begin{aligned}
1+y^{2} & =(-\ln x+C)^{2} \\
y^{2} & =(-\ln x+C)^{2}-1
\end{aligned}
$$

$$
y= \pm \sqrt{(-\ln x+C)^{2}-1} \quad \text { explicit solution }
$$

$$
\begin{aligned}
& \text { 6. } d r+r \cot \theta d \theta=d \theta \\
& \frac{d r}{d \theta}+\underset{P(\theta)}{(\cot \theta)}=1_{Q(\theta)}^{1} \\
& e^{\int P(\theta) d \theta}=e^{\int \operatorname{\int ctad} \theta}=e^{-\ln (\operatorname{ssc} \theta)}=e^{\ln (\csc \theta)^{-1}}=(\csc \theta)^{-1}=\sin \theta \\
& \sin \theta\left(\frac{d r}{d \theta}+r \cot \theta\right)=(1) \sin \theta \\
& \frac{d}{d \theta}(\sin \theta \cdot r)=\sin \theta \\
& \int d(r \sin \theta)=\int \sin \theta d \theta \\
& r \sin \theta=-\cos \theta+C \quad \text { implicit solution }
\end{aligned}
$$

$r=\frac{-\cos \theta+C}{\sin \theta}=-\cot \theta+C \csc \theta$ explicit solution
7. $r \sqrt{1-\theta^{2}} \frac{d r}{d \theta}=\theta+4 \quad$ separable

$$
\begin{aligned}
& r d r= \frac{\theta+4}{\sqrt{1-\theta^{2}}} d \theta \\
& \int r d r= \int\left(\frac{\theta}{\sqrt{1-\theta^{2}}}+\frac{4}{\sqrt{1-\theta^{2}}}\right) d \theta \\
& \prod_{u=1}^{u=\theta^{2}} \\
& d u=-2 \theta d \theta \\
&-\frac{1}{2} d u=\theta d \theta \\
& \frac{1}{2} r^{2}=-\frac{1}{2} \int u^{-1 / 2} d \theta+4 \sin ^{-1} \theta \\
& \frac{1}{2} r^{2}=-\frac{1}{2} \cdot \frac{2}{1} u^{1 / 2}+4 \sin ^{-1} \theta+C \\
& \frac{1}{2} r^{2}=-\left(1-\theta^{2}\right)^{1 / 2}+4 \sin ^{-1} \theta+C
\end{aligned}
$$

implicit solution
to find the explicit solution:

$$
\begin{aligned}
\frac{1}{2} r^{2} & =-\left(1-\theta^{2}\right)^{1 / 2}+4 \sin ^{-1} \theta+C_{1} \\
r^{2} & =-2\left(1-\theta^{2}\right)^{1 / 2}+8 \sin ^{-1} \theta+2 C_{1} \quad C=2 C_{1} \\
r & = \pm \sqrt{-2\left(1-\theta^{2}\right)^{1 / 2}+8 \sin ^{-1} \theta+C}
\end{aligned}
$$

8. $2 \frac{d y}{d x}=5-6 y$
separable (bat linear first -order with

$$
\begin{aligned}
& \frac{1}{5-6 y} d y=\frac{1}{2} d x \\
& \int \frac{1}{-6 y+5} d y=\int \frac{1}{2} d x \\
& \frac{1}{-6} \ln (-6 y+5)=\frac{1}{2} x+C
\end{aligned}
$$

implicit solution
to find the explicit solution: $-\frac{1}{6} h(-6 y+5)=\frac{1}{2} x+C_{1}$

$$
\begin{aligned}
\ln (-6 y+5) & =-3 x-6 C_{1} \\
-6 y+5 & =e^{-3 x-6 C_{1}} \\
-6 y & =e^{-3 x} e^{-6 C_{1}}-5 \\
y & =e^{-3 x} \frac{e^{-6 C_{1}}}{-6}+\frac{5}{6} \quad C=\frac{e^{-6 C_{1}}}{-6} \\
y & =C e^{-3 x}+\frac{5}{6}
\end{aligned}
$$

9.

$$
\begin{aligned}
& e^{2 x} d y+e^{x} d x=4 d x \\
& e^{2 x} d y=4 d x-e^{x} d x \\
& e^{2 x} d y=\left(4-e^{x}\right) d x \quad \text { separable } \\
& d y=\frac{4-e^{x}}{e^{2 x}} d x \\
& \int d y=\int\left(\frac{4}{e^{2 x}}-\frac{e^{x}}{e^{2 x}}\right) d x \\
& y=\int\left(4 e^{-2 x}-e^{-x}\right) d x \\
& y=4\left(\frac{1}{-2}\right) e^{-2 x}-\left(\frac{1}{-1}\right) e^{-x}+C \\
& y=-2 e^{-2 x}+e^{-x}+C
\end{aligned}
$$

10.

$$
\begin{aligned}
& \frac{d v}{d t}-\frac{v}{t}=\ln t \\
& \left.\frac{d v}{d t}-\frac{1}{t}\right)_{\rho(t)}^{v}=(\ln t)_{Q(t)} \\
& e^{\operatorname{sp(A)dt}}=e^{\rho-\frac{1}{t} d t}=e^{-\ln t}=e^{\ln t^{-1}}=t^{-1} \\
& t^{-1}\left(\frac{d v}{d t}-\frac{1}{t} v\right)=(\ln t) t^{-1} \\
& \frac{d}{d t}\left(t^{-1} v\right)=\frac{\ln t}{t} \\
& \int d\left(t^{-1} v\right)=\int \frac{\ln t}{t} d t \\
& t^{-1} v=\int u d u \\
& \frac{v}{t}=\frac{1}{2} u^{2}+C
\end{aligned}
$$

$$
\frac{v}{t}=\frac{1}{2}(\ln t)^{2}+C
$$

implicit solution
$v=\frac{1}{2} t(\ln t)^{2}+C t \quad$ explicit solution
II.

$$
\begin{aligned}
&\left(y x^{2}+y\right) \frac{d y}{d x}=\tan ^{-1} x \\
& y\left(x^{2}+1\right) \frac{d y}{d x}=\tan ^{-1} x \quad \text { separable } \\
& y d y=\frac{\tan ^{-1} x}{x^{2}+1} d x \\
& \int y d y=\int \tan ^{-1} x \cdot \frac{1}{1+x^{2}} d x \\
& \operatorname{let} u=\tan ^{-1} x \\
& d u=\frac{1}{1+x^{2}} d x \\
& \frac{1}{2} y^{2}=\int u d u \\
& \frac{1}{2} y^{2}=\frac{1}{2} u^{2}+C
\end{aligned}
$$

$$
\frac{1}{2} y^{2}=\frac{1}{2}\left(\tan ^{-1} x\right)^{2}+C \quad \text { implicit solution }
$$

to find the explicit solution:

$$
\begin{aligned}
\frac{1}{2} y^{2} & =\frac{1}{2}\left(\tan ^{-1} x\right)^{2}+C_{1} \\
y^{2} & =\left(\tan ^{-1} x\right)^{2}+2 C_{1} \quad C=2 C_{1} \\
y & = \pm \sqrt{\left(\tan ^{-1} x\right)^{2}+C} \quad \text { explicit solution }
\end{aligned}
$$

12.

$$
\begin{aligned}
& V+1+(1+\sin T) \sec T \frac{d V}{d T}=0 \\
& (\mid+\sin T) \sec T \frac{d U}{d T}=-(V+1) \\
& \frac{1}{V+1} d V=-\frac{1}{(H+\sin T)_{\sec T}} d T \\
& \int \frac{1}{V+1} d V=-\int \frac{\cos T}{1+\sin T} d T \\
& \text { let } n=\mid+\sin T \\
& d u \cdot \cos T d T \\
& \ln (U+1)=-\int \frac{1}{u} d u \\
& \ln (V+1)=\cdot \ln n+C \\
& \ln (D+1)=-\ln (1+\sin T)+C \text { implicit solution }
\end{aligned}
$$

to find the explicit solution:

$$
\begin{aligned}
\ln (V+1) & =-\ln (1+\sin T)+C_{1} \\
V+1 & =e^{-\ln (1+\sin T)+C_{1}} \\
V+1 & =e^{-\ln (1+\sin T)}\left[e^{C_{1}} \quad C=e^{C_{1}}\right. \\
V & =C e^{\ln (H \sin T)^{-1}}-1 \\
V & =C(1+\sin T)^{-1}-1 \\
V & =\frac{C}{1+\sin T}-1
\end{aligned}
$$

