ex. Solve $\frac{d y}{d x}=3 y$ given that $y=-2$ when $x=0$.

$$
\begin{aligned}
d y & =3 y d x \\
\int \frac{1}{y} d y & =\int 3 d x
\end{aligned}
$$

Method 1: with absolute value

$$
\int \frac{1}{y} d y=\int 3 d x
$$

$\ln |y|=3 x+C \leftarrow$ geneal solution in implicit form

Option 1: find C fist, then solve for y

$$
\begin{aligned}
\ln |y| & =3 x+C \\
\ln |-2| & =3(0)+C \\
\ln 2 & =0+C \\
C & =\ln 2
\end{aligned}
$$

$$
\underset{\substack{\text { porticallar } \\ \text { solution }} \text { so } \ln |y|=3 x+\ln 2 .}{ }
$$

now sable for y :

Option 2: solve for y first,

so $y=-e^{\ln 2} e^{3 x}$
$y=-2 e^{3 x} \leftarrow$ particular solution
paticicalas sol.
in explicit $\overrightarrow{\text { fam }}$ so $y=-2 e^{3 x}$

Method 2: without absolute value

$$
\begin{aligned}
\int \frac{1}{y} d y & =\int 3 d x \\
\ln y & =3 x+C \\
y & =e^{3 x+C}
\end{aligned}
$$

 like any real (this replace the role of the \pm from the absolute value)

$$
\begin{aligned}
-2 & =k e^{3(0)} \\
-2 & =k
\end{aligned}
$$

so $y=-2 e^{3 x} \leftarrow$ particular solution in explicit form

