ex. Solve
$$\frac{dy}{dx} = 3y$$
 given that $\frac{1}{y=-2}$ when $\frac{1}{x=0}$.

$$\frac{dy}{dx} = \frac{3}{3}dx$$

$$\frac{1}{y}dy = \frac{1}{3}dx$$

Anly $\frac{1}{y} = \frac{1}{3}dx$

Anly $\frac{1}{y} = \frac{1}{$

Method 2: without absolute value

I gly = I 3 dx

In y = 3x + C at this step, we connot solve for C

y = e^{5x + C}

since In = 1 is undefined.

So we must solve for y first.

Since e is a constant, we can simplify as k = e^C

like any real

(this replaces the role of the -2 = k e³⁽⁶⁾

+ from the -2 = k

absolute value)

So y = -2e^{5x}

And this step, we connot solve for C

since is a constant, we can simplify as k = e^C

general solution in explicit form