Section 28.2: The Basic Logarithm Form
recall:

$$
\frac{d}{d x}(\ln x)=\frac{1}{x}
$$

where the domain of $\ln x$ is $x>0$ \uparrow
values of x fo which the function $\ln x$ is defined
so
$\int \frac{1}{x} d x=\ln \underbrace{|x|}_{\text {this }}+C$
x can hare any non-zero value
examples:
(1) $\int \frac{d x}{x-3}=\ln |x-3|+c$
nat: can use substitution
let $u=x-3$

$$
\begin{aligned}
& d u=d x \\
& \text { integral| }=\int \frac{d v}{v}=\ln |v|+C \\
&=\ln |x-3|+C
\end{aligned}
$$

(2) $\int \frac{x^{3} d x}{1-x^{4}}$
|e| $v=1-x^{4}$

$$
\begin{aligned}
d v & =-4 x^{3} d x \\
\frac{d v}{-4} & =x^{3} d x
\end{aligned}
$$

$$
=\int \frac{d v}{-4.1}
$$

$$
\begin{aligned}
& =\int \frac{d v}{-4 v} \\
& =-\frac{1}{4} \ln |u|+C \\
& =-\frac{1}{4} \ln \left|1-x^{4}\right|+C
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \int \frac{e^{-3 x}}{2+5 e^{-3 x}} d x \\
& =\int_{-\frac{d u}{-15}}^{-15} \ln |u|+C \\
& =\frac{-1}{15} \ln \left|2+5 e^{-3 x}\right|+c \\
& =\frac{-1}{15} \ln \left(2+5 e^{-3 x}\right)+C
\end{aligned}
$$

$$
\text { let } u=2+5 e^{-3 x}
$$

$$
d u=-15 e^{-3 x} d x
$$

$$
\frac{d u}{-15}=e^{-3 x} d x
$$

\leftarrow perfectly acceptable answer \#1
\leftarrow perfectly acceptable answer \#2
and, unfortunately, you can rewrite this expression:

$$
\begin{aligned}
& =-\frac{1}{15} \ln \left(\frac{2 e^{3 x}+5}{e^{3 x}}\right)+C \\
& \text { note: } 2+5 e^{-3 x}\left(\frac{e^{3 x}}{e^{3 x}}\right)=\frac{2 e^{3 x}+\frac{5 e^{-3 x} e^{3 x}}{e^{3 x}}}{=-\frac{1}{15}\left[\ln \left(2 e^{3 x}+5\right)-\ln e^{3 x}\right]+C} \\
& =-\frac{1}{15}\left[\ln \left(2 e^{3 x}+5\right)-3 x\right]+C+C \operatorname{corco-4}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{15} L \frac{1}{5} \times-\frac{1}{15} \ln \left(2 e^{3 x}+5\right)+C \quad \in \text { perfectly } \\
& \text { acceptable answer }
\end{aligned}
$$

(4) $\int \frac{\sin 2 \theta}{1-\cos ^{2} \theta} d \theta$
$\operatorname{method} \not \ddagger 1:$

$$
\begin{aligned}
& =\int \frac{2 \sin \theta \cos \theta d \epsilon}{1-\cos ^{2} \theta} \\
& \left\{\begin{array}{l}
1 e t u=1-\cos ^{2} \theta \\
d u=+2 \cos \theta \sin \theta d \epsilon
\end{array}\right. \\
& =\int \frac{d u}{u} \\
& =\ln |u|+C \\
& =\ln \left|1-\cos ^{2} \theta\right|+C
\end{aligned}
$$

method \#2:

$$
\begin{aligned}
& =\int \frac{2 \sin \theta \cos \theta d \theta}{\sin ^{2} \theta} \\
& =\int \frac{2 \cos \theta d \theta}{\sin \theta} \\
& \qquad \begin{aligned}
\text { let } v & =\sin \theta \\
d v & =\cos \theta d \theta
\end{aligned}
\end{aligned}
$$

$$
=\int \frac{2 d v}{v}
$$

$$
\begin{aligned}
& =2 \ln |u|+C \\
& =2 \ln |\sin \theta|+C
\end{aligned}
$$

