Section 28.4: cont'a $^{\text {a }}$
Monday, January 15, 2018 10:26 AM
(8)

$$
\begin{aligned}
& \int \frac{\tan e^{-x}}{e^{x}} d x \\
&=\int e^{-x} \tan e^{-x} d x \\
&=\int-\tan u d u \\
&=+\ln |\cos u|+c \\
&=\ln \left|\cos e^{-x}\right|+c
\end{aligned}
$$

(9) $\int \frac{\tan 2 x}{\cos 2 x} d x$
let $u=\sec 2 x$ $a_{u}=2 \tan 2 x \sec 2 x$
method H1: $=\int \tan 2 x \sec 2 x d x$

$$
=\frac{1}{2} \sec 2 x+C
$$

methca \#2:

$$
=\int \frac{\sin 2 x}{\cos ^{2} 2 x} d x
$$

$$
\begin{aligned}
& =\int-\frac{1}{2} \frac{d v}{u^{2}} \\
& =\int-\frac{1}{2} u^{-2} d u \\
& =-\frac{1}{2} \frac{u^{-1}}{-1}+C \\
& =\frac{1}{2} u^{-1}+C \\
& =\frac{1}{2 \cos 2 x}+C
\end{aligned}
$$

(10) $\int \sin x \cos x d x$
metnod \#1:
let $v=\sin x$

$$
d v=\cos x d x
$$

$$
\begin{aligned}
& =\int u d u \\
& =\frac{1}{2} u^{2}+C \\
& =\frac{1}{2} \sin ^{2} x+C
\end{aligned}
$$

method \#2:

$\rho \quad$| let u | $=\cos x$ |
| ---: | :--- |
| $d u$ | $=-\sin x d x$ |
| $-d u$ | $=\sin x d x$ |

$$
\begin{aligned}
& \pi \alpha: \\
&=\int \sin x \cos x d x \\
&=\int-u d u \\
&=-\frac{u^{2}}{2}+C \\
&=-\frac{1}{2} \cos ^{2} x+C
\end{aligned}
$$

method $\# 3$:

$$
\begin{aligned}
\int \sin x \cos x d x & =\int \frac{1}{2} \sin 2 x d x \\
& =-\frac{1}{4} \cos 2 x+C
\end{aligned}
$$

