Section 29.3: Partial Derivatives

What happens we try to take the derivative of a function of two or more variables?
\rightarrow these derivative's are called "partial derivatives"
and are written:
$\frac{\partial f}{\partial x}$
∂ is like a backword six, not a "d" (dee)
other notations:

$$
\begin{array}{cc}
f_{x}(x, y) & f_{y}(x, y) \\
\frac{\partial}{\partial x} f(x, y) & \frac{\partial}{\partial y} f(x, y)
\end{array}
$$

ヘ \quad T
note: must specify which voricble you are differentiating with respect to!
main idea:

if we take a slice parallel to the $x-2$ plane

the slope of this line is

$$
\frac{\partial z}{\partial x}
$$

So, how do ya calculate partial derivatives?

- treat the other variable(s) as if they were constants
and differentiate as usual
example: find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for $f(x, y)=x^{2}+\partial x y$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=2 x+2 y \\
& \frac{\partial f}{\partial y}=0+2 x=2 x
\end{aligned}
$$

nate: the actual full definition of partial derivatives:

$$
\frac{\partial f}{\partial x}=\lim _{h \rightarrow 0} \frac{f(x+h, y)-f(x, y)}{h}
$$

but we wart get into that
example: find $\left.\frac{\partial z}{\partial y}\right|_{(3, \pi / 2,9)} \quad$ for $z=x^{2} \cos 4 y$

$$
\begin{aligned}
& \frac{\partial z}{\partial y}=-4 x^{2} \sin 4 y \\
& \left.\frac{\partial z}{\partial y}\right|_{(3, \pi / 2,9)}=-4(3)^{2} \sin (4 \cdot \pi / 2)=0
\end{aligned}
$$

