Section 29.4: cont'd
example: evaluate

$$
\begin{array}{rl}
\int_{0}^{\pi} \int_{1}^{3} x \sin y & d x d y \\
& =\int_{0}^{\pi}\left[\left.\frac{x^{2}}{2} \sin y\right|_{1} ^{3}\right] d y \\
& =\int_{0}^{\pi}[9 / 2 \sin y-1 / 2 \sin y] d y \\
& =\int_{0}^{\pi} 4 \sin y d y \\
& =-\left.4 \cos y\right|_{0} ^{\pi} \\
& =-4 \cos \pi+4 \cos 0 \\
& =-4(-1)+4(1) \\
& =8
\end{array}
$$

applications: volume under a 30 surface
consider a surface $z=f(x, y)$

what is the volume underneath this 3D surface?
consider the little area element $d A$ in the $x-y$ plane

$$
\begin{aligned}
d V & =2 d A \\
& =2 d x d y \\
& =f(x, y) d x d y
\end{aligned}
$$

ar or could swap to get $d y d x$
in general

$$
\begin{aligned}
V & =\int_{V} d V \\
& =\int_{V} f(x, y) d A \\
& =\int_{V} f(x, y) \underbrace{d x d y}_{\text {or } d y d x}
\end{aligned}
$$

So, let's do an example, including how to set up
the limits
example: Find the volume under the plane $x+y+z=2$ in the first octant

step 1: draw a picture of the $x-y$ plane $(z=0)$

$$
x+y=2
$$

note: $\quad y=2-x$
step 2: take a slice in $x-y$ plane to set up the limits
hard limits

$$
\begin{aligned}
& 0 \leq x \leq 2 \\
& 0 \leq y \leq 1 \cdot x \\
& 0 \leq y \leq 2-x
\end{aligned}
$$

step 3: set up integral:

$$
\begin{aligned}
V & =\int_{V} f(x, y) d A \\
& =\int_{0}^{2} \int_{0}^{2-x} f(x, y) d y d x
\end{aligned}
$$

bu what's this? it's 2

$$
\begin{aligned}
x+y+z & =2 \\
z & =2-x-y
\end{aligned}
$$

$$
V=\int_{0}^{2} \int_{0}^{2-x}(2-x-y) d y d x
$$

