Section 29.4: cont'd

Mini quiz on wearesday

- evalvate a dable intesral
last tine, we ended up w.th:

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{2-x}(2-x-y) d y d x \\
&=\int_{0}^{2}\left[\left.\left(2 y-x y-\frac{y^{2}}{2}\right)\right|_{0} ^{2-x}\right] d x \\
&=\int_{0}^{2}\left[2(2-x)-x(2-x)-\frac{(2-x)^{2}}{2}\right] d x \\
&=\int_{0}^{2}\left[(2-x)^{2}-\frac{(2-x)^{2}}{2}\right] d x \\
&=\int_{0}^{2}\left[\frac{(2-x)^{2}}{2} d x\right. \\
&=-\left.\frac{(2-x)^{3}}{2 \cdot 3}\right|_{0} ^{2} \\
&=0+\frac{a^{2}-\frac{a^{2}}{2}}{6}
\end{aligned}
$$

$$
\begin{aligned}
& =-\left.\frac{(2-x)^{3}}{2 \cdot 3}\right|_{0} ^{2} \\
& =0+\frac{2^{3}}{6} \\
& =\frac{8}{6}=4 / 3
\end{aligned}
$$

$$
\begin{aligned}
& \text { novel } \int_{0}^{2} \frac{(2-x)^{2}}{2} d x \\
& =\int_{x=0}^{x=2}-\frac{v^{2}}{2} d v \\
& =-\left.\frac{u^{3}}{2 \cdot 3}\right|_{x=0} ^{x=2} \\
& \text { let } u=2-x \\
& d v=-d x
\end{aligned}
$$

example: evaluate the integral $I=\iint_{T} x y d A$
over the triangle T with vertices $(0,0),(1,0)$ and $(1,2)$.
step: draw the region in the $x y$ plane

a

step 2: choose a slice and set up limits method \#1: vertical slice method \#2: horizontal

$$
\text { T: } \quad \begin{array}{ll}
0 \leq x \leq 1 \\
& 0 \leq y \leq 2 x
\end{array}
$$

$$
0 \leq y \leq 2
$$

$$
y / 2 \leq x \leq 1
$$

step 3: set up integral method H_{1} :

$$
\begin{aligned}
I & =\iint_{T} x y d 0 \\
& =\int_{0}^{1} \int_{0}^{2 x} x y d y d x \\
& =\int_{0}^{1}\left[\left.\frac{x y^{2}}{2}\right|_{0} ^{2 x}\right] d x \\
& =\int_{0}^{1}\left[\frac{x(2 x)^{2}}{2}-0\right] d x \\
& =\int_{0}^{1} 2 x^{3} d x \\
& =\left.\frac{2 x^{4}}{4}\right|_{0} ^{1}
\end{aligned}
$$

$=1 / 2$

